Apuntes 1º Bachillerato CT

Slides:



Advertisements
Presentaciones similares
GEOMETRÍA ANALÍTICA PLANA
Advertisements

Apuntes 1º Bachillerato CT
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Apuntes 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Apuntes 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
Apuntes 1º Bachillerato CT
FUNCIONES ELEMENTALES
Apuntes 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Apuntes 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
FUNCIONES ELEMENTALES
Apuntes 1º Bachillerato CT
Apuntes 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
Apuntes 1º Bachillerato CT
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
FUNCIONES ELEMENTALES
Matemáticas 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
GEOMETRÍA ANALÍTICA PLANA
FUNCIONES ELEMENTALES
Apuntes 1º Bachillerato CT
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Apuntes 1º Bachillerato CT
Apuntes 1º Bachillerato CT
Apuntes 1º Bachillerato CT
GEOMETRÍA ANALÍTICA PLANA
Apuntes 1º Bachillerato CT
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Matemáticas 1º Bachillerato CT
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Matemáticas 1º Bachillerato CT
Apuntes 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
OPERACIONES CON ÁNGULOS
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 EJERCICIOS TEMA 1.7 * 2º BCT.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 DERIVACIÓN TEMA 12.3 * 2º BCT.
Sistemas de ecuaciones
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 DECIMALES Y POTENCIAS TEMA 2.
DERIVADAS DE OPERACIONES
Apuntes 2º Bachillerato C.S.
TEMA 1 Sistemas de ecuaciones lineales
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 DECIMALES Y POTENCIAS TEMA 2.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema VII Derivadas.
Apuntes 2º Bachillerato C.T.
DERIVADAS DE OPERACIONES DÍA 44 * 1º BAD CT
Tema I Sistemas de ecuaciones
Apuntes de Matemáticas 2º ESO
ECUACIONES Y SISTEMAS Tema 3 * 4º ESO Opc Angel Prieto Benito
ALGUNAS PROPIEDADES DE LAS RAÍCES
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 NÚMEROS RACIONALES Tema 1 * 3º ESO.
NÚMEROS ENTEROS Y DECIMALES
Matemáticas Aplicadas CS I
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 U.D. 4 * 1º ESO NÚMEROS ENTEROS Y DECIMALES.
Apuntes de Matemáticas 3º ESO
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 U.D. 9 * 1º BCT DERIVADAS Y GRÁFICAS.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 DERIVADAS U.D. 8 * 1º BCT.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 SISTEMAS DE ECUACIONES U.D. 6 * 3º ESO E.AC.
Apuntes 1º Bachillerato CT
Transcripción de la presentación:

Apuntes 1º Bachillerato CT DERIVADAS Tema 10 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

DERIVADA DE OPERACIONES Tema 10.5 * 1º BCT @ Angel Prieto Benito Apuntes 1º Bachillerato CT

DERIVADAS DE FUNCIONES POLINÓMICAS. Sea f(x) = k Aplicando la definición de derivada de una función: f (x + h) - f(x) k - k 0 f ‘ (x) = lím ------------------- = --------- = ------- = 0 h 0 h h h Sea f(x) = x f (x + h) - f(x) x + h - x h f ‘ (x) = lím ------------------- = -------------- = ------ = 1 h 0 h h h Sea f(x) = x2 Aplicando la definición de derivada: f (x + h) - f(x) (x + h)2 - x2 x2 + 2.x.h + h2 - x2 f ‘ (x) = lím ---------------------- = ------------- = ------------------------- = h 0 h h h = 2.x + h = 2.x + 0 = 2.x @ Angel Prieto Benito Apuntes 1º Bachillerato CT

DERIVADAS DE FUNCIONES POLINÓMICAS. Sea f(x) = x3  De igual manera se llegaría a que f ‘ (x) = 3. x2 Resumiendo: f (x) = x  f ‘ (x) = 1 f (x) = x2  f ‘ (x) = 2.x f (x) = x3  f ‘ (x) = 3. x2 Generalizando: f (x) = xn  f ‘ (x) = n. xn – 1 Como se ve para hallar la función derivada de una expresión polinómica, el exponente de la x pasa multiplicando y el nuevo exponente presenta una unidad menos. @ Angel Prieto Benito Apuntes 1º Bachillerato CT

Apuntes 1º Bachillerato CT DERIVADA DE LA SUMA Sea y = f(x)+g(x) Aplicando la definición de derivada: f(x + x) + g(x + x) ‑ f(x) ‑ g(x) y ' = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑------------------------------ = x0 x f(x + x) - f(x) g(x + x) ‑ g(x) = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑-------- + ------------------------ = x0 x x f(x + x) - f(x) g(x + x) ‑ g(x) = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑--- + lím ------------------------ = x0 x x0 x y’ = f ’(x) + g ‘(x) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

Apuntes 1º Bachillerato CT DERIVADA DEL PRODUCTO Sea y = f(x). g(x) Aplicando la definición de derivada: f(x + x). g(x + x) ‑ f(x). g(x) y ' = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑------------------------------ = x0 x Sumamos y restamos f(x).g(x+x) al numerador, quedando: f(x + x). g(x + x) ‑ f(x) . g(x) + f(x).g(x+x) - f(x).g(x+x) = lím ‑‑------‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑------------------------------------------------------------- x 0 x Sacando factor común : [f(x + x) - f(x)]. g(x + x) + [g(x + x) - g(x)]. f(x ) = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑--------------------------------------------------------------- x0 x f(x + x) - f(x) g(x + x) - g(x) = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑---- g(x + x) + lím ---------------------- f(x) = x0 x x0 x y ’ = f ‘(x) . g(x) + f(x) . g ’(x) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

Apuntes 1º Bachillerato CT DERIVADA DE LA INVERSA Sea y = k.f(x) Aplicando la definición de derivada: k. f(x + x) - k.f(x) k. [f(x + x) - f(x)] y ' = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑---------- = lím ---------------------------- = k. f ‘(x) x0 x x0 x Sea y = 1 / f(x) Aplicando la definición de derivada: 1 / f(x + x) - 1 / f(x) f(x) - f(x + x) y ' = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-------------- = lím ---------------------------- = x0 x x0 f(x). f(x + x). x - [f(x + x) - f(x)] 1 1 - f ‘(x) y ' = lím ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑----- . ------------------- = - f ‘(x). ---------- = ------- x0 x f(x). f(x + x) f(x).f(x) f 2(x) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

DERIVADA DE LA DIVISIÓN Sea y = g(x) / f(x) Poniéndolo de la forma: y = g(x). 1 / f(x) y operando como producto de dos funciones: g ’(x) - f ‘(x) y ' = g ‘(x). 1 / f(x) + g(x).[ 1/f(x)]’ = --------- + g(x). ------------ f(x) f 2 (x) y sacando mínimo común múltimo resulta: g ‘(x). f(x) - g(x). f ‘(x) y ‘ = ------------------------------------- f 2 (x) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

OTRAS DERIVADAS MUY EMPLEADAS Sea y = √x Siempre se puede poner previamente como y = x1/2 Pero conviene memorizar su derivada por la frecuencia con que aparece: y ’ = 1 / 2√x Sea y = 1 / x Siempre se puede poner previamente como y = x – 1 y ’ = – 1/ x2 Sea y = 1 / f (x) Sea cual sea el tipo de la función f(x) su derivada es: y ‘ = – f ‘(x) / f 2 (x) Por eso es importante memorizar su derivada, aunque no imprescindible. @ Angel Prieto Benito Apuntes 1º Bachillerato CT

Apuntes 1º Bachillerato CT REGLA DE LA CADENA Ya hemos visto como dadas dos funciones f(x) y g(x) , no es lo mismo (f o g)(x) que (g o f)(x) Ambas funciones compuestas son diferentes, y diferentes serán por tanto sus funciones derivadas. Sea y = f(g(x))  y’ = f ’ (g(x)) . g ‘ (x) (1) Sea y = g(f(x))  y’ = g ‘ (f(x)) . f ‘ (x) (2) Ejemplo 1 Sea f(x) = x3 y g(x) = (x – 1) Función compuesta (1): (fog)(x) = f(g(x)) = (x – 1)3 = x3 – 3x2 + 3x – 1 Derivadas : f ’(x) = 3x2 ,, g ’(x) = 1 ,, f ’(g(x)) = 3x2 – 6x + 3 ,, g ’(f(x)) = 3x2 (1) y’ = f ’ (g(x)) . g ‘ (x) = (3x2 – 6x + 3 ).1 = 3x2 – 6x + 3 Función compuesta (2): (gof)(x) = g(f(x)) = x3 – 1 (2) y’ = g ’ (f(x)) . f ‘ (x) = 1 . 3x2 = 3x2 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

Apuntes 1º Bachillerato CT REGLA DE LA CADENA Ejemplo 2 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

Apuntes 1º Bachillerato CT REGLA DE LA CADENA Ejemplo 3 @ Angel Prieto Benito Apuntes 1º Bachillerato CT