GEOMETRIA ANALITICA Definición, ecuaciones y aplicaciones de la paràbola CURSO DE ENSEÑANZA DE LAS MATEMÁTICAS PROFESOR: EFREN CASTAÑEDA MENDOZA.

Slides:



Advertisements
Presentaciones similares
Curso Geometría Analítica Sesión 4. La parábola.
Advertisements

Generatriz Eje SUPERFICIE CÓNICA
Ecuación de la recta Prof. Juan Medina..
INTRODUCCION A LA GEOMETRIA ANALITICA
PARÁBOLAS.
TALLER III: DIDÁCTICA DE LA HISTORIA Y LAS CIENCIAS SOCIALES Primer Semestre 2009 Registro Etnográfico y Entrevista. Herramientas para indagar sobre el.
ESCUELA ESPECIAL Nº 502 ESTEBAN ECHEVERRÍA
Geometría Analítica Parábola (versión preliminar)
Parábola.
CONCURSO DE PLANIFICACIONES DE AULA MODELOS MATEMATICOS COMO ESTRATEGIA DIDACTICA PARA EL APRENDIZAJE DE LA GEOMETRI ANALITICA EN CUARTO DE SECUNDARIA.
Módulo I. Introducción al Modelo de Bachillerato Digital Unidad 2
U NIVERSIDAD P OPULAR A UTÓNOMA DE V ERACRUZ EDUCACIÓN MEDIA SUPERIOR BACHILLERATO VIRTUAL Tercer trimestre Matemáticas III Unidad III Actividad 7 La Parábola,
CONGRUENCIA DE COMPETENCIAS
M. en C. René Benítez López
La hipérbola Matemáticas Preuniversitarias
Colegio Santo Tomás de Villanueva
10 Sesión Contenidos: Función cuadrática.
Situaciones que dan origen a funciones cuadráticas
Geometría Análitica.
Luisa Fernanda Pazos O. Clave: 21 Tercero Básico “A” Fecha: 28/09/12.
Parábola Es el lugar geométrico de un punto de coordenadas (x,y) que se mueve sobre un plano , de manera que su distancia a un punto fijo llamado foco.
Lugares geométricos. Las cónicas y las cuádricas
LA CIRCUNFERENCIA Y LA PARÁBOLA
Curso de: Matemáticas de Apoyo Geometría Analítica
Las Secciones Cónicas.
MATEMÁTICAS Y COMPUTACIÓN EN EL ARTE Profesora : Rosaura Heredia Vargas.
LAS CONICAS CUANDO SE INTERCEPTA UN PLANO Y UN DOBLE CONO INVERTIDO, SEGÙN EL ÀNGULO DE CORTE, SE ORIGINA UNA SECCIÒN EN EL SÒLIDO, ESTE PUEDE SER UNA.
GEOMETRIA ANALITICA.
M. en C. René Benítez López
David Araujo Díaz México. D.F. marzo del año 2005
La Parábola Geometría Analítica.
Análisis de contextos educativos diseñados para la promoción de competencias M. en. C. María Esther Rodríguez Ramírez Dra. María Elena Rodríguez Pérez.
PARABOLAS a nuestro ALREDEDOR
Gráfica de una ecuación y lugares geométricos
ENSEÑANZA DE LAS MATEMATICAS CON TECNOLOGIAS
Principios para las Matemáticas Escolares
INTRODUCCION A LA GEOMETRIA ANALITICA
LA PARABOLA.
Parábola.
Si las competencias tienen expresión en un saber hacer Fundamentado en un saber la evaluación debe considerar no sólo lo que el estudiante sabe sino lo.
GEOMETRIA ANALITICA.
M. en C. René Benítez López
¿Qué aporta el estudio de la matemática para construir el Perfil de Egreso de la Educación Básica? Cd. De México, mayo de 2012.
Estándares de Matemáticas
Unidad de Operación Desconcentrada para el Distrito Federal
Geometría Analítica.
UNIDAD DE APRENDIZAJE 2:
Geometría Análitica.
LAS SECCIONES CÓNICAS.
22 de octubre de   ¿Hacia dónde reorientar el currículo en la Educación media superior?  ¿Qué, cómo y para qué aprender la disciplina correspondiente.
HABILIDADES DIDACTICAS. INSTRUCCIONES -VAS LEYENDO EN VOZ ALTA LAS LETRAS DEL ALFABETO Y LEVANTAS EL BRAZO IZQUIERDO, DERECHO O AMBOS DE ACUERDO CON LA.
Facultad de Ingeniería División de Ciencias Básicas
Diseño de sesión de Aprendizaje IDEA
CIRCUNFERENCIA, PARÁBOLA, ELIPSE
Valencia-Isabelica 16 de Noviembre 2008
ECUACIONES DE PRIMER GRADO INSTITUTO TECNICO AGROPECUARIO
Asignatura básica Titular: Mtro. José López Pérez Cel:
Área Académica: Matemáticas Tema: Circunferencia Profesor(a): Paz María de Lourdes Cornejo Arteaga Periodo: Julio-Diciembre 2015.
Operaciones con funciones
Números racionales Lorenzo Contreras Garduño Ago. 2015
COLEGIO DE BACHILLERES PLANTEL 19
Planear una sesión ¡ Bienvenidos !.
Alumno: Ariedne Niurca Aranda García Tutor: EDGAR JAIR JIMENEZ VASQUEZ Unidad III Actividad 1.
Esta obra es exclusivamente de uso académico para los Profesores - Tutores del diplomado Competencias Docentes en el uso de las TIC para el Bachillerato.
LUGAR GEOMETRICO Un lugar geométrico es el conjunto de puntos que cumplen una determinada condición que sólo pueden cumplir ellos. Es importante asimilar.
Física Básica Modulo II EQUILIBRIO TRASLACIONAL Elaboro: Ing. Paulina Morales Valenzuela UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL DR. ÁNGEL MA.
LA CIRCUNFERENCIA Y LA PARÁBOLA UNIDAD 13. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a.
UNIVERSIDAD NACIONAL DE CHIMBORAZO INSTITUTO DE POSTGRADO IP MAESTRIA EN ENSEÑANZA DE LA FÍSICA ELECTROMAGNETISMO Y ÓPTICA Dr. Arquímdes Xavier Haro.
OBJETIVOS DE LOS PROGRAMAS DE ESTUDIO: SESIÓN DE TRABAJO 3 DE SEPTIEMBRE DE 2013 SECRETARÍA GENERAL SECRETARÍA DE APOYO A LA DOCENCIA.
Clase de revisión: sistemas de ecuaciones lineales Clase de revisión: sistemas de ecuaciones lineales Objetivos: Mediar en el aprendizaje de: resolución.
Transcripción de la presentación:

GEOMETRIA ANALITICA Definición, ecuaciones y aplicaciones de la paràbola CURSO DE ENSEÑANZA DE LAS MATEMÁTICAS PROFESOR: EFREN CASTAÑEDA MENDOZA CETIS33

PROFESOR EFREN CASTAÑEDA MENDOZA CETIS 33 SECUENCIA DIDACTICA: 6 PROFESOR EFREN CASTAÑEDA MENDOZA CETIS 33 ASIGNATURA: GEOMETRÍA ANALÌTICA SEMESTRE : tercero FECHA : 25-28 junio 2014 GEOMETRÍA ANALÌTICA: El alumno a partir de la apropiación de los contenidos fundamentales de la matemática, desarrollará habilidades de pensamiento, comunicación y descubrimiento; que le permita usarlas en la resolución de problemas cotidianos y sea participe en su desarrollo sustentable de su entorno, y participar en equipos colaborativos en la construcción del conocimiento utilizando las nuevas tecnologías de la información. Aplicación del software de galileo. CONCEPTO FUNDAMENTAL: ECUACIÒN DE LA PARÀBOLA CONCEPTOS SUBSIDIARIOS   COMPETENCIAS DISCIPLINARIAS: 1. Construye e interpreta modelos matemáticos mediante la aplicación de procedimientos aritméticos, algebraicos,  2.Formula y resuelve problemas matemáticos, aplicando diferentes enfoques. 4. Argumenta la solución obtenida de un problema, con métodos numéricos, gráficos, analíticos , mediante el lenguaje verbal, matemático y el uso de las tecnologías de la información y la comunicación. 5. Interpreta tablas, gráficas, mapas, diagramas y textos con símbolos matemáticos y científicos. COMPETENCIAS GENERICAS: CATEGORIA 2. SE EXPRESA Y SE COMUNICA. CMPETENCIA 4. Escucha e interpreta y emite mensajes pertinentes en distintos contextos mediante la utilización de medios, códigos y herramientas apropiados. CATEGORIA 3. PIENSA CRÍTICA Y REFLEXIVAMENTE. CATEGORIA 4. APRENDE DE FORMA AUTONOMA. COMPETENCIA 7. Aprende por iniciativa e interés propio a lo largo de la vida. CATEGORIA 5. TRABAJA EN FORMA COLABORATIVA. ESTRATEGIAS DIDACTICAS TIPO DE ACTIVIDAD TIEMPO ASIGNADO PRODUCTO DE APRENDIZAJE DE ENSEÑANZA DE APRENDIZAJE ACTIVIDADES DE APERTURA: EL ALUMNO IDENTIFICARA ELEMENTOS DONDE SE UBIQUE LA PARABOLA ALREDEDOR DE SU ENTORNO COTIDIANO . ( CONCIERTO , EN SU CASA, ESTADIOS, EN LA CALLE ETEC.  MEDIANTE FORMULARIO DE ECUACIONES EXPUESTO Y EXPLICADO POR EL FACILITADOR SE PROCEDERA A LA GRAFICA DE ECUACIONES El facilitador mediante una lluvia de ideas y apuntes demostrara la utilización de la parábola y sus ecuaciones Mediante previa investigación los alumnos conformados por equipos de 5 personas expondrán el tema de parábola y su aplicación. Explicarán cada tema y serán cuestionados por los equipos restantes. Investigación y reporte en papel de rota folio para exponer en la clase. 2 horas. Reporte de la investigación. I ACTIVIDADES DE DESARROLLO: MEDIANTE FORMULARIO DE ECUACIONES EXPUESTO Y EXPLICADO POR EL FACILITADOR SE PROCEDERA A LA GRAFICA DE ECUACIONES El fácilitador explicara los elementos para encontrar los elementos de la parábola Los estudiantes practicaran los métodos algebraicos en su cuaderno de apuntes para llegar a sus ecuaciones. Planteamiento y desarrollo de ecuaciones Ejercicios en su cuaderno ACTIVIDADES DE CIERRE: Un arco de concreto salva un espacio de 40 mts y una carretera de 20 mts de ancho pasa por debajo de el . La altura libre mínima sobre la carretera debe ser de 10 mts. ¿ cual es la altura del arco mas pequeño que se puede emplear ?. El facilitador guiará a sus alumnos para encontrar la ecuación de la parábola Los Estudiantes seguirán el procedimiento grafico para encontrar las ecuaciones PRACTICA EN EL LABORATORIO Impresiones de las GRAFICAS realizadas en el laboratorio utilizando el software de GALILEO EVIDENCIAS A EVALUAR Graficas , conceptos, exposicion manejo del software galileo INSTRUMENTOS DE EVALUACIÓN: Realización convenientemente de la Práctica. PONDERACIÓN: Evaluación Sumativa. RECURSOS DIDACTICOS: Taller de computación debidamente acondicionado para la realización de la práctica. MATERIALES: Pizarrón Plumones Borrador Escuadras Laser Cinta métrica masquen BIBLIOGRAFÍA GEOMETRIA ANALÍTICA.- Prof. Toribio Cruz Sánchez Edit. EDIMAF GEOMETRÍA ANALÍTICA.- Benjamín Garza Olvera DGETI Matemáticas 3 – Sergio Luis Rodríguez N. Editorial-Umbral SITIOS DE INTERNET :htpp//:www.youtube.com/watch?v=sOmZ1quNN8g http:/www.youtube.com/watch?v=N8WhvRjbGC8 www.galileo.com www.galileo.com. http://www.galileo2@com.mx

APERTURA 1.-El docente para despertar el interés y recuperar los saberes previos de los participantes solicita a los estudiantes realizar la lectura “figuras PARÁBOLICAS en la construcción” obtenidas en la fotocopiadora ( previamente otorgada por el docente para su fotocopiado ) 2.-El docente formula la siguiente pregunta. 3.-¿Les parece interesante la lectura, conocemos algo de nuestro entorno que se relacione con lo leído? Y luego les pide que organicen la información en un organizador visual. 4. El docente explica los temas en forma secuenciada empezando primero por las figuras encontradas en la lectura y que son parecidas en su entorno diario 5. Los alumnos identifican dicha información anotando en sus cuadernos para luego resolver una guía de práctica 6. Finalmente el docente pregunta que han aprendido del tema, los estudiantes participando dando su opinión y remarcan la importancia de la matemática ( parábola )en la vida diaria

TRAYECTORIA DE UNA BOLA Si se deja caer una bola o su velocidad inicial es paralela a la fuerza de gravedad, la trayectoria que sigue es una recta. En cambio si la lanzamos al aire con una velocidad que forme un ángulo distinto de cero respecto a la fuerza de gravedad, el movimiento es una parábola.  Un proyectil alcanzará la mayor distancia si el ángulo de la velocidad inicial es igual a 45º respecto a la horizontal. La bola por su forma esférica minimiza el roce con el aire. Si se tratara de una pluma, la forma geométrica del movimiento sería diferente.

PARÁBOLA O HIPÉRBOLA Las parábolas a veces tienen un aspecto similar a las ramas de las hipérbolas. Sin embargo, la hipérbola tiene un comportamiento asintótico, es decir, tiende a comportarse como una recta hacia el infinito, pero sin llegar a tocarla. En cambio, las parábolas no tienen asíntotas. Una estructura puede tener una forma parabólica o hiperbólica. Para discriminar de qué curva se trata habría que recurrir a las ecuaciones que las describen. Sin embargo, la simple observación respecto al comportamiento menor o mayormente asintótico puede darnos algunas pistas. Algunos puentes utilizan estas curvas para distribuir uniformemente las cargas. Si nos fijamos en las bifurcaciones, el primer puente parece tener un aspecto más parabólico y el segundo más hiperbólico

Señales que inciden paralelamente al eje, se reflejan hacia el foco de la parábola. Si la fuente emisora se encuentra sobre el foco, los rayos se reflejarán en forma paralela al eje. Tecnologías que aplican este principio de esta forma geométrica: antena, cocina solar, linterna

DESARROLLO Se llama parábola al lugar geométrico de los puntos del plano que equidistan de un punto fijo, llamado foco, y de una recta fija llamada directriz. Directriz La Directriz es la recta sobre la cual si medimos su distancia hasta un punto cualquiera de la parábola, esta debe ser igual a la distancia de este mismo punto al Foco Parámetro la distancia entre el vértice y la directriz que es la misma de entre el vértice y el foco de una parábola recibe el nombre de parámetro de la parábola (suele denotarse por p). Eje Focal es la recta perpendicular a la directriz que pasa por el foco. Vértice Es el punto en el cual la parábola corta el eje focal Lado recto Es un segmento paralelo a la directriz, que pasa por el foco y es perpendicular al eje focal y sus extremos son puntos de la parábola (A,B).

Ecuación ordinaria de la Parábola CON EJE FOCAL PARALELO AL EJE X Ecuación general de la Parábola Ay² + Bxy + C + Dx+Ey + F = 0 Ecuación ordinaria de la Parábola CON EJE FOCAL PARALELO AL EJE X Ecuación general de la Parábola Ax² + Bxy + C + Dx+Ey + F = 0

Dada la siguiente gráficas, encuentra su expresión algebraica:

( 0 , 40 ) ( -10 , 0 ) ( 10 , 0) ACTIVIDADES DE CIERRE: Un arco de concreto salva un espacio de 40 mts y una carretera de 20 mts de ancho pasa por debajo de el . La altura libre mínima sobre la carretera debe ser de 10 mts. ¿ cual es la altura del arco mas pequeño que se puede emplear ?. ( 0 , 40 ) ( -10 , 0 ) ( 10 , 0) Utilizamos agregar punto teniendo en cuenta como referencia el origen del plano cartesiano y así obtenemos las coordenadas del arco parabólico

Damos agregar parábola y aparece en el centro del origen con un parámetro. Ubicamos el centro del arco parabólico con las coordenadas de la altura h =0 , k = 40 y como debe abrir hacia abajo ubicamos el parámetro negativo y vamos aproximando el parámetro hasta que toque los puntos ( 10 , 0 ) y ( 0, -10 )

Sabiendo que la altura mínima sobre la carretera debe ser de 10 mts trazamos una recta con su ecuación y= 10 y con el cursor observamos donde corta con la parábola ( -8.6 , 10 ) ( 8.6 , 10 ) donde será el punto más alto para cualquier transporte o elemento que dese cruzar bajo el arco parabólico. Nota: el problema lo encuentro confuso ya que para calcular la altura de otro arco mas pequeño estaría hablando de otra ecuación y elementos . Espero que esto sea lo que nos pide quedo a sus ordenes para la retroalimentación si es el caso (- 8.6 , 10 ) ( 8.6 , 10 )