Materiales Cristalinos

Slides:



Advertisements
Presentaciones similares
DEFINICION Las Redes de Bravais o celdas unitarias, son paralelepípedos que constituyen la menor subdivisión de una red cristalina que conserva las características.
Advertisements

ARREGLO ATOMICO.
GENERALIDADES DE SOLIDOS CRISTALINOS Y AMORFOS
SISTEMAS CRISTALINOS CELDA UNIDAD
Composición de la materia
Sólidos: estructura cristalina
REDES DE BRAVAIS Luis David Villarreal Muñoz Código:
ESTRUCTURA DE LOS SÓLIDOS
Sólidos Cristalinos: orden periódico, repetitividad en el espacio
Notas de clase Física de Semiconductores
Introducción a la cristalografía
Materiales Cristalinos
Sólidos Inorgánicos Simetria en solidos Redes de Bravais
Física de Semiconductores
Sistemas Cristalinos.
Cristalización.
Cristalografía Enlaces  se gana energía cuando se acercan entre si conjuntos de átomos o moléculas, formando materiales sólidos. ¿Cómo se distribuyen.
12. Sólidos.
ESTRUCTURA CRISTALINA
MATERIALES – ESTRUCTURA ATÓMICA Y ESTRUCTURA CRISTALINA Introducción: Las props y el comportamiento de los materiales dependen de su composición y estructura.
MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES
PROPIEDADES GENERALES DE LOS SÓLIDOS
SÓLIDOS IÓNICOS Tipos de huecos
Estequiometría. Aprendizajes esperados Conocer las leyes que rigen la estequiometría de las reacciones. Comprender el concepto de mol. Reconocer la constante.
ENLACES QUÍMICOS IÓNICO COVALENTE METÁLICO Sustancias iónicas
 Enlace Metálico: Este tipo de enlace se presenta en los metales, que forman agregados en los que no se encuentran átomos,sino iones ´positivos en posiciones.
1 LA TABLA PERIÓDICA Clasificación de Mendeleiev Clasificó lo 63 elementos conocidos utilizando el criterio de masa atómica creciente, ya que no.
Los líquidos.
El átomo Componentes básicos Protones: Carga positiva Masa de 1.673e-24 gr.
Propiedades periódicas de los elementos OA: Usar la tabla periódica como un modelo para predecir las propiedades relativas de los elementos químicos basados.
1 Un fluido es un líquido o un gas. En mecánica de fluidos se estudia el comportamiento de líquidos y gases, especialmente los líquidos, en dos condiciones:
Materiales Cristalinos La estructura física de los materiales sólidos de importancia en el diseño depende del ordenamiento de los átomos, iones o moléculas.
RELACION ENTRE RADIO ATOMICO Y PARÁMETRO DE RED Radio atómico: Se calcula a partir de las dimensiones de la celda unitaria, utilizando las direcciones.
Ciencia de Materiales Leonardo Goyos Tania Rodríguez
Clase auxiliar 6 Prof. Mauricio Morel Auxiliares: Nicolás Carvajal
Fátima.
Mecanismo de deformación: Deslizamiento de dislocaciones
LA MATERIA Imágenes tomadas de
Sólidos cristalinos y amorfos
Arreglo atómico En los distintos estados de la materia se pueden encontrar cuatro clases de Arreglos atómicos: Sin orden.- En los gases monoatómicos como.
Clase #4: Nucleación, Transformaciones y Diagramas TTT
EL HOMBRE DEL RENACIMIENTO ANTE LOS MINERALES
BASICAS COMPUESTAS OPERACIONES Y OPERADORES DE SIMETRIA Traslación
TABLA PERIÓDICA.
ELECTRONEGATIVIDAD Es una medida de la capacidad de un átomo de atraer los electrones en un enlace químico.
CIENCIA DE LOS MATERIALES CÉSAR E. RIOS HERNANDEZ
1.3-Arreglos atómicos En los diferentes estados de la materia se pueden encontrar tres formasen que se ordenan los átomos: Sin orden Orden de corto plazo.
Propiedades periódicas
3.3 TRANSMISIÓN DEL CALOR NM2.
ENLACE QUÍMICO.
ESTRUCTURA ATÓMICA DE LOS MATERIALES Alumno: Ember Pineda Contreras CI:
ESTRUCTURA DE LOS SÓLIDOS TEMA 3. TIPOS DE SÓLIDOS Sólidos cristalinos Los átomos, iones o moléculas se empaquetan en un arreglo ordenado Sólidos covalentes.
Arreglos atómicos e iónicos
ENLACE METÁLICO.
Instructor: Rodrigo Caballero. PROPIEDADES DE LOS MATERIALES.
ESTRUCTURA CRISTALINA Los cristales: Gracias a la distribución de las partículas,las fuerzas netas de atracción intermolecular son máximas. Las fuerzas.
PROPIEDADES DE LOS SÓLIDOS CURSO DE FÍSICA II. CONTENIDO 1.Estados de la materia 2.Propiedades elásticas de los sólidos 3.Módulo de Young: elasticidad.
Enlace químico. Compuestos Es una sustancia pura que se descompone en elementos. La parte más pequeña de un compuesto es una molécula. La molécula es.
+ Capítulo 1 La estructura de los metales. Manufactura, Ingeniería y Tecnología Jonathan Gustavo Huerta Flores Jonathan Meza Garcia Alaín Ramirez Tehozol.
Propiedades periódicas de los elementos
ESTRUCTURAS CRISTALINAS
Cristal.. CONCEPTO: solido homogéneo, que presenta una estructura interna ordenada y periódica de sus partículas reticulares, sean átomos, iones o moléculas.
UNIVERSIDAD AUTÓTOMA DE BAJA CALIFORNIA CAMPUS TIJUANA 1 Maestría y Doctorado en Ciencias e Ingeniería Curso de Cristalografía I CRISTALOGRAFÍA I Unidad.
Introducción a la Termodinámica  La termodinámica se desarrollo pragmáticamente para saber como se pueda usar el calor para efectuar trabajo mecánico.
SEMANA UNIONES Y LICDA. CORINA MARROQUIN.
¿Que es un solido cristalino?  Un sólido cristalino es aquél que tiene una estructura periódica y ordenada, como consecuencia tienen una forma que no.
Estructuras cristalinas. - Sistemas cristalinos. - Compuestos intermetálicos.
1 REDES ESPACIALES Y CELDAS UNITARIAS. 2 SISTEMAS CRISTALINOS Se pueden construir 14 celdas unitarias o redes de Bravais las cuales se pueden agrupar.
Transcripción de la presentación:

Materiales Cristalinos La estructura física de los materiales sólidos de importancia en el diseño depende del ordenamiento de los átomos, iones o moléculas que lo constituyen, y de las fuerzas de enlace entre ellos.

Materiales Cristalinos Si los átomos o iones están ordenados en un patrón que se repite en el espacio, forman un sólido que tiene un Orden de Largo Alcance (OLA) al cual se llama sólido cristalino. Ej: metales, aleaciones, algunos materiales cerámicos

Materiales Cristalinos Existen materiales cuyos átomos o iones no están ordenados a largo alcance, periódico y repetible, y poseen únicamente Orden de Corto Alcance (OCA). Ej: agua líquida. Se los llama amorfos o no cristalinos.

El ordenamiento se puede describir representando a los átomos en los puntos de intersección de una red tridimensional. Esta red se llama red espacial. Cada punto en la red espacial tiene un entorno idéntico. La red puede describirse especificando la posición de los átomos en una celda unitaria repetitiva. El tamaño y forma de la celda puede describirse por tres vectores de la red a, b y c. Estas longitudes, junto con los ángulos interaxiales ,  y  nos proporcionan la forma de la celda

Con distintas longtidudes axiales y ángulos interaxiales se pueden construir celdas unitarias de diversos tipos. Los cristalógrafos han demostrado que se necesitan siete tipos diferentes de celdas unitarias para crear todas las redes. Varios de los siete sistemas cristalinos presentan variaciones de su estructura básica, totalizando 14 celdas unitarias según la demostración de Bravais

Principales Estructuras Cristalinas Metálicas La mayoría de los metales puros (aprox. 90%) cristalizan al solidificar en tres estructuras cristalinas compactas: Cúbica Centrada en el cuerpo (BBC) Cúbica Centrada en las caras (FCC) y Hexagonal Compacta (HCP) Los sólidos se empacan en estructuras compactas porque la energía es menor a medida que disminuye la distancia entre los átomos o iones.

Estructura cristalina cúbica centrada en el cuerpo (BCC) En esta celda unitaria, cada átomo está rodeado por ocho vecinos más próximos y se dice que su número de coordinación es 8. Cada celda unitaria contiene 2 átomos

Es importante obtener una variable de esta celda, la arista del cubo en relación con el radio del átomo, considerado como una esfera. Como en la diagonal de la celda hay dos esferas, o sea 4 radios, y esto es igual a 3 * a = 4 R, de donde puede despejarse a=4R/ 3 A partir de este dato puede obtenerse el factor de empaquetamiento atómico (APF) que es el % de volumen ocupado en la celda por átomos. APF=(volumen de los átomos)/(volumen de la celda) APF (BCC) = 2*Vat/a3 = 2*(4/3)*R3/ 12,32 R3 = 0,68

Estructura cristalina cúbica centrada en las caras (FCC) En esta celda unitaria, cada átomo está rodeado de 12 vecinos. Cada celda unitaria contiene 4 átomos.

Para este tipo de celda, se ve que en la diagonal de una de las caras tenemos 4 radios, y esta diagonal es: 2 * a = 4 * R ; entonces a = (4*R)/ 2 Si realizamos el cálculo de APF, obtenemos un valor de 0,74; mayor que el 0,68 que se obtuvo para la estructura BCC. Este valor es el máximo que puede obtenerse con “átomos esféricos”. Ejemplos de esta estructura son el aluminio, cobre, plomo y níquel.

Estructura cristalina hexagonal compacta (HCP) Cada átomo está rodeado por 12 vecinos. Cada celda unitaria contiene dos átomos. Para este caso, el parámetro importante es la relación entre la altura del hexágono (a) y su arista( c). El APF para este caso también es de 0,74

Comparación de estructuras cristalinas Las estructuras HCP y FCC son compactas, ambas tiene un APF del 74%, pero no son idénticas, ya que hay una diferencia en el orden de apilamiento de los planos atómicos. Imaginemos las formas de apilar más eficientemente objetos esféricos, ya que siempre quedan espacios libres. Ej: ver como se apilan las naranjas en una frutería.

La densidad volumétrica de un metal puede obtenerse utilizando la ecuación: Densidad =  = (masa/celda unitaria) / (volumen/celda unitaria). Problema: el cobre tiene una estructura cristalina FCC y un radio atómico de 0,1278 nm. Considerando los átomos como esferas rígidas que se tocan entre sí; calcule el valor teórico de la densidad del cobre en en Kg/m3. La masa atómica del cobre es de 63,54 g/mol. Datos complementarios: volumen FCC = a3. a=4R/2. La celda tiene 4 átomos 1 mol = 6,02 x 1023 átomos.