Teorema de Thales MÓDULO 22

Slides:



Advertisements
Presentaciones similares
MATEMÁTICAS II MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Advertisements

Para los alumnos de Segundo Medio
Teorema de Thales.
SEMEJANZA.
Bases de la geometría Haroldo Cornejo Olivarí
PROFESORA: GLADYS ZORRILLA
APLICACIÓN DE TRIÁNGULOS EN EL CÁLCULO DE ALTURAS
TEOREMA DE TALES Si un conjunto de rectas paralelas corta a dos rectas secantes, los segmentos determinados por las paralelas en una de las secantes, son.
PROF: JAIME QUISPE CASAS I.E.P.Nº 2874 Ex
Congruencias y semejanzas de figuras planas
GEOMETRÍA ANALITICA LA RECTA Por los puntos A(12,8),
PROPORCIONALIDAD Y SEMEJANZA
Teorema de Thales Esta presentación fue pensada y creada como un apoyo para los alumnos que necesitan aclarar ideas relacionadas con este teorema Prof.:
Thales de Mileto Nació en Mileto, Grecia, alrededor del año 624 a. C., hijo de Examyes y Cleobuline. Fue ingeniero, filósofo, comerciante, matemático y.
Departamento de Matemáticas
El Teorema de Tales Elaborado por: Marina Alcaide Delgado
APLICANDO LA PROPORCIONALIDAD DE THALES Y PITÁGORAS Prof. José Mardones Cuevas
TEOREMA DE PITÁGORAS TEOREMA DE EUCLIDES.
Observamos que sus lados son proporcionales:
Estudiante en práctica de Pedagogía en Matemática
SEMEJANZA Y PROPORCIONALIDAD
SEMEJANZA Y CONGRUENCIA
Geometría de proporción
Teorema de Thales Semejanza.
Teorema de Thales Profesor: Reynaldo Flores Troncos.
EN LA ACADEMIA DONDE PLATÓN IMPARTÍA SUS ENSEÑANZAS SE LEÍA:
CLASE 45.
Figura 1 Figura Ángulos adyacentes:
Actividad Gráficos sistemas de ecuaciones Visitar Sector matemática  Segundo medio.
Geometría de Proporción
Departamento de Matemática
Tema: Semejanza “Criterios de semejanza de triángulos”
Geometría de Proporción
TEOREMA DE THALES APM.
SEMEJANZA DE TRIANGULOS
Semejanza de Triángulos
SEMEJANZA DE TRIÁNGULOS PERÍMETROS, ÁREAS y VOLÚMENES
Teorema de Tales de Mileto
Apuntes de Matemáticas 2º ESO
Esta presentación nos aclara como utilizar este famoso teorema
Apuntes de Matemáticas 3º ESO
Para mis alumnos de 4º B En esta presentación encontrarás :
SEMEJANZA DE TRIÁNGULOS
Triángulos Universidad de Ciencias Aplicadas
TEOREMA DE THALES ESPAD III * TC 22.
SEMEJANZA.
Para entrar en materia, debemos recordar algunas ideas:
PUNTO MEDIO ENTRE DOS PUNTOS
Colegio El Valle Figuras semejantes
Congruencias y semejanzas de figuras planas
5 Semejanzas Las transformaciones que mantienen la forma y las proporciones se llaman semejanzas. LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD.
Congruencias y semejanzas de figuras planas
Aplicación de la proporcionalidad, ejemplos.
UN POCO DE HISTORIA Y LAS APLICACIONES DE SU TEOREMA
Profra. Sandra L. García Garza
THALES DE MILETO.
Congruencias y semejanzas de figuras planas
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA U.D. 9 * 3º ESO E.AP.
Teorema de Thales I° medio 2015.
TEOREMAS DE SEMEJANZA TEOREMA DE THALES ..
Thales de Mileto Uno de los aportes importantes de Thales de Mileto, es el Teorema que lleva su nombre. El Teorema de Thales establece la relación entre.
Resuelve problemas de semejanza de triángulos y Teorema de Pitágoras.
SEMEJANZA DE TRIÁNGULOS
Pedro Godoy G. Proporcionalidad en el triángulo a a’ c b b’ c’
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 8 * 4º ESO E. AC. SEMEJANZA.
TEOREMA DE THALES ..
TEOREMA DE PITÁGORAS.
Teorema de Thales Esta presentación fue pensada y creada como un apoyo para los alumnos que necesitan aclarar ideas relacionadas con este teorema.
Teorema de Thales. Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Thales era considerado uno de los siete sabios de Grecia Algunos.
Transcripción de la presentación:

Teorema de Thales MÓDULO 22

Teorema de Thales Biografía de Thales de Mileto Cálculo de la altura de una Pirámide Enunciado del Teorema de Thales Ejemplo 1 Ejemplo 2 Triángulo de Thales Ejemplo 3 Ejemplo 4

Teorema de Thales Más de su biografía… Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Thales era un hombre que se destacó en varia áreas : comerciante, hábil en ingeniería, astrónomo, geómetra Thales era un hombre que se destacó en varia áreas : comerciante, hábil en ingeniería, astrónomo, geómetra Thales era considerado uno de los siete sabios de Grecia Más de su biografía…

Una anécdota contada por Platón Teorema de Thales Sobresale especialmente por: Que en sus teoremas geométricos aparecen los inicios del concepto de demostración y se podría decir que son el punto de partida en el proceso de organización racional de las matemáticas. Una anécdota contada por Platón “Una noche Thales estaba observando el cielo y tropezó. Un sirviente lo Levantó y Le dijo: cómo pretendes entender lo que pasa en el cielo, si no puedes ver lo que está a tus pies. “

Teorema de Thales Se cuenta que comparando la sombra de un bastón y la sombra de las pirámides, Thales midió, por semejanza, sus alturas respectivas. La proporcionalidad entre los segmentos que las rectas paralelas determinan en otras rectas dio lugar a lo que hoy se conoce como el teorema de Thales.

Teorema de Thales Rayos solares S (sombra) H(altura de la pirámide) Puesto que los rayos del Sol inciden paralelamente sobre la Tierra los triángulos rectángulos determinados por la altura de la pirámide y su sombra y el determinado por la altura del bastón y la suya son semejantes Rayos solares S (sombra) H(altura de la pirámide) s (sombra) h (altura de bastón) Podemos, por tanto, establecer la proporción H h = S s De donde h•S H= s Pirámide

Teorema de Thales Enunciado del teorema

los segmentos a, b, c y d son proporcionales "Si tres o más rectas paralelas son intersecadas por dos transversales, los segmentos de las transversales determinados por las paralelas, son proporcionales , T y S transversales, En el dibujo: Si L1 // L2 // L3 los segmentos a, b, c y d son proporcionales T S L1 L2 L3 Es decir: = c a b d

EJEMPLO 1 En la figura L1 // L2 // L3 , T y S transversales, calcula la medida del trazo x 8 24 x 15 Ordenamos los datos en la proporción, de acuerdo al teorema de Thales X 15 Es decir: 8 = 24 Y resolvemos la proporción 24 • x = 8 • 15 X =8 • 15 24 X = 5

EJEMPLO 2 En la figura L1 // L2 // L3 , T y S son transversales, calcula x y el Segmento CD Formamos la proporción 3 = x+4 x+1 2 Resolvemos la proporción 3(x + 1) = 2(x + 4) 3x + 3 = 2x + 8 3x - 2x= 8 - 3 X=5 Luego, como CD = x + 4 CD= 5 + 4 = 9

Coralario de Thales H(altura de la pirámide) h (altura de bastón) TRIANGULO DE  THALES Dos triángulos se dicen de Thales o que están en posición de Thales, cuando: Tienen un ángulo común y los lados opuestos a dicho ángulo son paralelos.   Podemos ver esto si trasladamos el triángulo formado por el bastón, su sombra y los rayos solares hacia el formado por la pirámide S (sombra) H(altura de la pirámide) s (sombra) h (altura de bastón)

Triángulos de Thales En dos triángulos de Thales, sus lados, tienen la misma razón  de semejanza  B C A D E AB AB AE AE De acuerdo a esto, en la figura BC// ED, entonces, con los lados de los triángulos AED y ABC ocurre: ED = BC ED O también = BC

Aplicaciones EJEMPLO 3 Calcula la altura del siguiente edificio x x 5 3 12 Escribimos la proporción Por que 3+12=15 3 15 = 5 Y resolvemos la proporción 3 • x = 5 • 15 x = 75 3 X = 25 Respuesta: la altura del edificio es de 25 unidades

Ejemplo 4 En el triángulo ABC, DE//BC , calcule x y el trazo AE Formamos la proporción Por que x+3+x = 2x+3 A B C x+3 x 8 12 D E 8 12 = X+3 2x+3 Resolvemos la proporción 8(2x + 3) = 12( x + 3) 16x + 24 = 12x + 36 16x – 12x = 36 – 24 4x = 12 X = 12 = 3 4 Por lo tanto, si AE = x + 3 = 3 + 3 = 6