FIRST TERM UNIT 0: SCIENTIFIC KNOWLEDGE U.0_3: Physical quantities.

Slides:



Advertisements
Presentaciones similares
Present Tense AR Verb Conjugation Verbs in Spanish either end in AR, ER or IR For example; hablar-to talk, comer- to eat, and venir- to come When we conjugate.
Advertisements

HYPERBOLAS Standard 4, 9, 16, 17 DEFINITION OF A HYPERBOLA
Write the letter of the correct definition or sentence next to the word below. 1.________ Algebraic Expression 2.________ Equation 3.________ Exponent.
1 SOLVING RATIONAL EQUATIONS SIMPLIFYING RATIONAL EXPRESSIONS Standards 4, 7, 15, 25 ADDING RATIONAL EXPRESSIONS PROBLEM 1 RATIONAL EXPRESSIONS PROBLEM.
Digital Photography: Selfie Slides
¿Qué haces en la escuela? Question words, objects, yo-go’s.
Tecnología y Estructura de Costos. Technologies u A technology is a process by which inputs are converted to an output. u E.g. labor, a computer, a projector,
Time Telling time is rather easy. You only need to know the numbers up to 59 to be able to tell the time.
Vocab: el día escolar Grammar: Subject Pronouns & Present Tense of –ar Verbs.
Sistemas de Medidas Sra. Vega Blasini.
Digital Photography: Selfie Slides Jaime lozano 28 oct 1.
Lesson 1: Length T. Trimpe 2008
LOS VERBOS REFLEXIVOS. WRITE: What is a reflexive verb? A reflexive verb describes when a person doing an action is also receiving the action.
¿Qué Están Haciendo? Use the PRESENT PROGRESSIVE tense to tell what the characters are doing in each scene.
Forming Questions ¡Aprenda! Forming Questions By Patricia Carl October 2013.
Mediciones Mr. Ferron – PSJA High School Dual Language Program.
Escribir *You can get creative. You can write in the first person which means you are the character, you can use the third person which means you are talking.
AQA Unit 2 Speaking Los medios La televisión La publicidad Las tecnologías de la comunicación La cultura de todos los días El cine La música La moda La.
LecturePLUS Timberlake1 The Atom Atomic Number and Mass Number Isotopes.
Objective Students will learn to tell time and be able to use the numbers from last lesson as a review.
Tema Cuantificación de magnitudes físicas en situaciones cotidianas
MEDIDA Y MÉTODO CIENTÍFICO
Dpto. de Física y Química
EQUILIBRIUM OF A PARTICLE IN 2-D Today’s Objectives: Students will be able to : a) Draw a free body diagram (FBD), and, b) Apply equations of equilibrium.
Institución Educativa Normal Superior “Santiago de Cali”
Magnitudes fundamentales Otras unidades equivalentes
Apuntes Matemáticas 2º ESO
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ESCUELA SUPERIOR DE ZIMAPÁN
FÍSICA Y QUÍMICA 3ºESO IES ANTIGUA SEXI.
PREGUNTAS: Questions and Question Words
Interactive notebook page 56
JUGAR to play a sport or a game
To ask what time it is in Spanish we say ______________
Clase inaugural. Química Electivo..
Refuerzo Magnitudes
La actividad científica
More sentences that contain if…
Introducción ACTIVIDAD: magnitudes Conceptos:
Los Números en Español Spanish4Teachers.org.
Medida y método científico
Propiedades de la materia
GRAPHIC MATERIALS 1. GRAPHIC MATERIALS. GRAPHIC MATERIALS 1. GRAPHIC MATERIALS.
COLEGIO ALFONSO REYES ECHANDÍA
SISTEMAS DE UNIDADES Sistema Inglés Sistema CGS
LAW OF CONSERVATION OF MASS
Los números.
PHYSICS & CHEMISTRY FÍSICA Y QUÍMICA 3º ESO
Quasimodo: Tienes que hacer parte D de la tarea..
FIRST TERM UNIT 0: SCIENTIFIC KNOWLEDGE
UNIT 0: SCIENTIFIC KNOWLEDGE
FIRST TERM UNIT 0: SCIENTIFIC KNOWLEDGE U.0_3: Physical quantities.
FIRST TERM UNIT 0: SCIENTIFIC KNOWLEDGE U.0_3: Physical quantities.
FIRST TERM UNIT 0: SCIENTIFIC KNOWLEDGE U.0_3: Physical quantities.
MAGNITUD Es cualquier propiedad de un cuerpo que se puede medir.
Propiedades de la materia
U_5_1_Basic terminology
Sistema Internacional de Medidas Factores de conversión
Preparacion Hoy es jueves el 3 de diciembre
Conceptos básicos de Termodinámica
U_5_1_Basic terminology
Propiedades de la materia
La materia y la medida fqcolindres.blogspot.com 2º ESO.
UNIT 1: The structure of matter: FQ3eso_U1_3: Electron configurations
THE ATOMIC STRUCTURE OF MATTER
Tapas Write a sentence using each word
Vámonos Answer the following questions in complete sentences in Spanish: ¿Cómo te llamas? ¿Cómo se llama tu mejor amigo (your best friend)?
Apuntes: Tener Lección 5: La familia.
Astronomy has really big numbers. Distance between Earth and Sun meters kilometers This is the closest star.
PHYSICS & CHEMISTRY FÍSICA Y QUÍMICA 3º ESO
Conversión de Unidades
Transcripción de la presentación:

FIRST TERM UNIT 0: SCIENTIFIC KNOWLEDGE U.0_3: Physical quantities. Física y química 3º E.S.O. FIRST TERM UNIT 0: SCIENTIFIC KNOWLEDGE U.0_3: Physical quantities. U.0_3_4: Physical quantities. Conversion factors. U.0_3_4 d1

Bloque 1. La actividad científica. El método científico: sus etapas. Medida de magnitudes. Sistema Internacional de Unidades. Notación científica. Utilización de las Tecnologías de la Información y la Comunicación. El trabajo en el laboratorio. Proyecto de investigación. Criterios de evaluación C.E.1.1. Reconocer e identificar las características del método científico. CMCT E.A.1.1.1. Formula hipótesis para explicar fenómenos cotidianos utilizando teorías y modelos científicos. E.A.1.1.2. Registra observaciones, datos y resultados de manera organizada y rigurosa, y los comunica de forma oral y escrita utilizando esquemas, gráficos, tablas y expresiones matemáticas. C.E.1.2. Valorar la investigación científica y su impacto en la industria y en el desarrollo de la sociedad. CCL, CSC E.A.1.2.1.Relaciona la investigación científica con las aplicaciones tecnológicas en la vida cotidiana. C.E.1.3. Conocer los procedimientos científicos para determinar magnitudes. CMCT E.A.1.3.1. Establece relaciones entre magnitudes y unidades utilizando, preferentemente, el Sistema Internacional de Unidades y la notación científica para expresar los resultados. C.E.1.4. Reconocer los materiales e instrumentos básicos presentes en los laboratorios de Física y Química; conocer y respetar las normas de seguridad y de eliminación de residuos para la protección del medio ambiente.CCL, CMCT. CAA, CSC. E.A.1.4.1. Reconoce e identifica los símbolos más frecuentes utilizados en el etiquetado de productos químicos e instalaciones, interpretando su significado. E.A.1.4.2. Identifica material e instrumentos básicos de laboratorio y conoce su forma de utilización para la realización de experiencias respetando las normas de seguridad e identificando actitudes y medidas de actuación preventivas. C.E.1.5. Interpretar la información sobre temas científicos de carácter divulgativo que aparece en publicaciones y medios de comunicación. CCL, CSC E.A.1.5.1. Selecciona, comprende e interpreta información relevante en un texto de divulgación científica y transmite las conclusiones obtenidas utilizando el lenguaje oral y escrito con propiedad. E.A.1.5.2. Identifica las principales características ligadas a la fiabilidad y objetividad del flujo de información existente en internet y otros medios digitales. C.E.1.6. Desarrollar y defender pequeños trabajos de investigación en los que se ponga en práctica la aplicación del método científico y la utilización de las TIC.CCL, CMCT, CD, SIEP E.A.1.6.1. Realiza pequeños trabajos de investigación sobre algún tema objeto de estudio aplicando el método científico, y utilizando las TIC para la búsqueda y selección de información y presentación de conclusiones. E.A.1.6.2. Participa, valora, gestiona y respeta el trabajo individual y en equipo. U.0_3_4 d2

Pau mide tanto como 2,15 veces la unidad de longitud que se toma como referencia. H Pau = 2,15 m Magnitud Número Unidad U.0_3_4 d3

CHANGING UNITS AND USING CONVERSION FACTORS All the quantities are related to only seven base quantities. U.0_3_4 d4

CHANGING UNITS AND USING CONVERSION FACTORS Magnitudes fundamentales SISTEMA INTERNACIONAL DE UNIDADES MAGNITUD UNIDAD SÍMBOLO MAGNITUDES FUNDAMENTALES LONGITUD Metro m MASA Kilogramo kg TIEMPO Segundo s INTENSIDAD DE CORRIENTE ELÉCTRICA Amperio A TEMPERATURA Kelvin K CANTIDAD DE SUSTANCIA Mol mol INTENSIDAD LUMINOSA Candela cd U.0_3_4 d5

CHANGING UNITS AND USING CONVERSION FACTORS Una magnitud derivada es aquella que se obtiene mediante expresiones matemáticas a partir de las magnitudes fundamentales (densidad, superficie, velocidad) Superficie de un cuadrado= Base x Altura= L x L La superficie es una magnitud derivada U.0_3_4 d6

MAGNITUDES FÍSICAS. UNIDADES Y MEDIDAS MÚLTIPLOS Y SUBMÚLTIPLOS Tabla de prefijos en el SI 1 ms = 10 -3 s 1 1 Prefijos “mili” = “la milésima parte de” s s 10 -3 s 1000 10 3 We compose the symbol for each unit by combining the prefix symbol and the basic unit symbol 1 mm = 10 -3 m The 20 SI prefixes used to form decimal multiples and submultiples of SI units: 1 1 Prefix “milli” = “one thousand times smaller than a ...” m m 10 -3 m 1000 10 3 U.0_3_4 d7

Metric Basic Units and Prefixes U.0_3_4 d8

1 ms = 10 -3 s Example: Tabla de prefijos en el SI +1.60 x 101 s CHANGING UNITS AND USING CONVERSION FACTORS We are going to use CONVERSION FACTORS to change units Tabla de prefijos en el SI 1 ms = 10 -3 s 1 1 Prefijos “mili” = “la milésima parte de” s s 10 -3 s 1000 10 3 Example: The 20 SI prefixes used to form decimal multiples and submultiples of SI units: 1 ms = 10 -3 s 10 -3 s +1.60 x 101 s t = +1.60 x 104 ms 1 ms U.0_3_4 d9

Calculate the charge of a single proton in picocoulombs CHANGING UNITS AND USING CONVERSION FACTORS MÚLTIPLOS Y SUBMÚLTIPLOS Tabla de prefijos en el SI Calculate the charge of a single proton in picocoulombs The 20 SI prefixes used to form decimal multiples and submultiples of SI units: 1 pC = 10 -12 C 1 pC +1.60 x 10-7 pC Q = +1.60 x 10-19 C 10 -12 C U.0_3_4 d10

CHANGING UNITS AND USING CONVERSION FACTORS Unit Factor Method The Unit Factor Method is a standard method to perform unit conversions in Science. U.0_3_4 d11

Conversion Factor Method BASIC PREMISES Premise one We can write the number 1 in very different ways 2 2 1 km 1 km 1 = = = = 1+1 1 km 1000 m 2 If you have two quantities that are equal, and you divide one by the other, you end up with a value equaling 1. Premise two A number can be multiplied by 1 and not change that number 2 2 1 km 1 km 4 x 1 = 4 x = 4 x = 4 x = 4 x = 4 1+1 1 km 1000 m 2 U.0_3_4 d12

Conversion Factor Method Applying the premises to the example : 10 3 mL V = 1.3 L = 1.3 L x 1 = 1.3 L x = 1.3 L x = 1 L 1 L Premise two: A number can be multiplied by 1 and not change that number Premise one: We can write the number 1 in very different ways If you have two quantities that are equal, and you divide one by the other, you end up with a value equaling 1. 1 L = 10 3 mL Unit equation 10 3 mL = 1.3 L x = 1.3 x 10 3 mL 1 L U.0_3_4 d13

A « Unit equation » shows the mathematical relation between base units Conversion Factor Method A « Unit equation » shows the mathematical relation between base units 1 m = 10 2 cm Unit equation A 1 cm = 10 -2 m Unit equation B U.0_3_4 d14

Exercise : Write or complete the following unit equations: Conversion Factor Method Exercise : Write or complete the following unit equations: 1 L = 10 3 mL Unit equation a) 1 km = ___m. b) 1 hg = ___ g. c) 1 kL = ___ L. d) 1 __g = 10-3 g. e) 1 mes = __ días f) 1 h = ____ s U.0_3_4 d15

Exercise : Write or complete the following unit equations: Conversion Factor Method Exercise : Write or complete the following unit equations: 1 L = 10 3 mL Unit equation a) 1 km = 103 m. b) 1 hg = 102 g. c) 1 kL = 103 L. d) 1 mg = 10-3 g. e) 1 mes = 30 días f) 1 h = 3600 s U.0_3_4 d16

Create the conversion factor : Conversion Factor Method Create the conversion factor : If you have two quantities that are equal, and you divide one by the other, you end up with a value equaling 1. From one unit equation: 1 L = 10 3 mL You can divide one quantity by the other in two different ways, so that you end up with a value equaling 1. 10 3 mL 1 L = 1 = 1 1 L 10 3 mL Two conversion factors U.0_3_4 d17

From one unit equation: Two conversion factors: Conversion Factor Method Write two conversion factors for each of the following unit equations, as in the example: From one unit equation: 1 L = 10 3 mL Two conversion factors: 1 L 10 3 mL 1 L 10 3 mL a) 1 km = 103 m. b) 1 hg = 102 g. c) 1 mg = 10-3 g. d) 1 h = 3600 s U.0_3_4 d18

From one unit equation: Two conversion factors: Conversion Factor Method Write two conversion factors for each of the following unit equations, as in the example: From one unit equation: 1 L = 10 3 mL Two conversion factors: 1 L 10 3 mL 1 L 10 3 mL a) 1 km = 103 m. b) 1 hg = 102 g. 10 3 m 1 km 10 2 g 1 hg 1 km 10 3 m 1 hg 10 2 g d) 1 h = 3600 s c) 1 mg = 10-3 g. 3600 s 1 h 10 -3 g 1 mg 3600 s 1 mg 10 -3 g 1 h U.0_3_4 d19

Conversion Factor Method Write two conversion factors for each of the following metric relationships: (a) kilometers and meters (b) grams and decigrams: U.0_3_4 d20

Conversion Factor Method Write two conversion factors for each of the following metric relationships: (a) kilometers and meters (b) grams and decigrams We start by writing the unit equation to generate the two conversion factors: (a)The prefix kilo-means 1000 basic units; thus, 1 km = 1000 m. The two conversion factors are: U.0_3_4 d21

Conversion Factor Method Write two conversion factors for each of the following metric relationships: (a) kilometers and meters (b) grams and decigrams We start by writing the unit equation to generate the two conversion factors: (b)The prefix deci-means 0.1 basic unit; thus, 0.1 g = 1 dg or 1 g = 10 dg The two unit factors are: U.0_3_4 d22

Conversion Factor Method Write two conversion factors for each of the following metric relationships: (a) liters and milliliters (b) megaseconds and seconds Answers: (a)1 L/1000 mL and 1000 mL/1 L (b)1 Ms/1,000,000 s and 1,000,000 s/1 Ms U.0_3_4 d23

Conversion Factor Method (Revising) U.0_3_4 d24

Conversion Factor Method (Revising) U.0_3_4 d25

Conversion Factor Method (Revising) 103 1 102 105 103 103 U.0_3_4 d26

Conversion Factor Method (Revising) U.0_3_4 d27

Conversion Factor Method (Revising) 103 103 103 106 U.0_3_4 d28

Conversion Factor Method (Revising) U.0_3_4 d29

Conversion Factor Method Now we are ready to use the Unit Factor Method or Conversion Factor Method to perform unit conversions U.0_3_4 d30

Conversion Factor Method A hospital has 125 deciliter bags of blood plasma. What is the volume of plasma expressed in liters? Strategy Plan: Step 1:What unit is asked for in the answer? Step 2:What given value is related to the answer? Step 3:What conversion factor should we apply? Given that 1 L = 10 dL, the two conversion factors are: U.0_3_4 d31

Conversion Factor Method A hospital has 125 deciliter bags of blood plasma. What is the volume of plasma expressed in liters? Strategy Plan: Unit Analysis Map: We apply the conversion factor 1 L/10 dL to cancel deciliters 1 L 1 L V = 125 dL = 125 dL x = 125 dL x = 12.5 L =1.25 x 101 L 10 dL 10 dL U.0_3_4 d32 The given value, 125 dL, limits the answer to three significant digits.

Conversion Factor Method A hospital has 125 deciliter bags of blood plasma. What is the volume of plasma expressed in milliters? Strategy Plan: Step 1:What unit is asked for in the answer? m Step 2:What given value is related to the answer? Step 3:What conversion factors should we apply? Given that 1 L = 10 dL, and 1 L = 1000 mL, the two pairs of conversion factors are: dL to L L to mL U.0_3_4 d33

Conversion Factor Method A hospital has 125 deciliter bags of blood plasma. What is the volume of plasma expressed in milliters? Strategy Plan: Unit Analysis Map: Conversion factor 1 changes dL to L and cancels dL Conversion factor 2 changes L to mL and cancels L U.0_3_4 d34

Conversion Factor Method A hospital has 125 deciliter bags of blood plasma. What is the volume of plasma expressed in milliters? Strategy Plan: Unit Analysis Map: dL to L Cancels dL 1 L V = 125 dL = 125 dL x 10 dL U.0_3_4 d35

Conversion Factor Method A hospital has 125 deciliter bags of blood plasma. What is the volume of plasma expressed in milliters? Strategy Plan: Unit Analysis Map: L to mL Cancels L 1 L 103 mL V = 125 dL = 125 dL x x = 101 dL 1 L U.0_3_4 d36

Conversion Factor Method A hospital has 125 deciliter bags of blood plasma. What is the volume of plasma expressed in milliters? Strategy Plan: Unit Analysis Map: 1 L 103 mL 103 mL 1 V = 125 dL = 125 dL x x = 125 x x = 101 dL 1 L 101 1 = 125 x 10-1 x 103 mL = 125 x 10 (-1+3) mL = 125 x 10 2 mL = = 1.25 x 10 4 mL U.0_3_4 d37

Conversion Factor Method Convert 3.5 km to millimeters Strategy Plan: Step 1:What unit is asked for in the answer? Step 2:What given value is related to the answer? Step 3:What conversion factors should we apply? km to m m to mm U.0_3_4 d38

Conversion Factor Method Convert 3.5 km to millimeters Strategy Plan: Unit Analysis Map: Conversion factor 1 changes km to m and cancels km Conversion factor 2 changes m to mm and cancels m U.0_3_4 d39

Conversion Factor Method Convert 3.5 km to millimeters Strategy Plan: Unit Analysis Map: km to m Cancels km 103 m L = 3.5 km = 3.5 km x 1 km U.0_3_4 d40

Conversion Factor Method Convert 3.5 km to millimeters Strategy Plan: Unit Analysis Map: m to mm Cancels m 103 m 1 mm L = 3.5 km = 3.5 km x x = 1 km 10-3 m U.0_3_4 d41

Conversion Factor Method Convert 3.5 km to millimeters Strategy Plan: Unit Analysis Map: 103 m 1 mm 1 L = 3.5 km = 3.5 km x x = 3.5 x 103 x mm = 1 km 10-3 m 10-3 = 3.5 x 103 x103 mm = 3.5 x 106 mm U.0_3_4 d42

Conversion Factor Method The mass of Earth is 5.98 × 1024kg. What is the mass expressed in megagrams? Strategy Plan: Step 1:What unit is asked for in the answer? Step 2:What given value is related to the answer? Step 3:What conversion factors should we apply? U.0_3_4 d43

Conversion Factor Method The mass of Earth is 5.98 × 1024kg. What is the mass expressed in megagrams? Strategy Plan: Unit Analysis Map: Conversion factor 1 changes kg to g and cancels kg Conversion factor 2 changes g to Mg and cancels g U.0_3_4 d44

Conversion Factor Method The mass of Earth is 5.98 × 1024kg. What is the mass expressed in megagrams? Strategy Plan: Unit Analysis Map: m= U.0_3_4 d45

Conversion Factor Method (Revising) U.0_3_4 d46

Conversion Factor Method (Revising) U.0_3_4 d47

Conversion Factor Method (Working with fractions) If a car is traveling at 95 km/h, what is the speed in meters per second (given that 1 km = 1000 m, and 1 h = 3600 s)? Strategy Plan: Step 1:What unit is asked for in the answer? Step 2:What given value is related to the answer? Step 3:What conversion factors should we apply? km to m h to s U.0_3_4 d48

Conversion Factor Method (Working with fractions) If a car is traveling at 95 km/h, what is the speed in meters per second (given that 1 km = 1000 m, and 1 h = 3600 s)? Strategy Plan: Unit Analysis Map: Conversion factor 1 changes km to m and cancels km, which is in the numerator Conversion factor 2 changes h to s and cancels h, which is in the denominator U.0_3_4 d49

Conversion Factor Method (Working with fractions) If a car is traveling at 95 km/h, what is the speed in meters per second (given that 1 km = 1000 m, and 1 h = 3600 s)? Strategy Plan: Unit Analysis Map: v= U.0_3_4 d50

Conversion Factor Method (Working with square units) U.0_3_4 d51

Conversion Factor Method (Working with square units) Strategy Plan: Step 1:What unit is asked for in the answer? Step 2:What given value is related to the answer? Step 3:What conversion factors should we apply? cm to m Cancels cm cm to m Cancels cm U.0_3_4 d52 =

Conversion Factor Method (Working with square units) Strategy Plan: Unit Analysis Map: cm to m Cancels cm Conversion factor 1 changes cm to m and cancels cm Conversion factor 2 changes cm to m and cancels cm U.0_3_4 d53

Conversion Factor Method (Working with square units) Strategy Plan: Unit Analysis Map: cm to m Cancels cm L = 3 cm2 = = 3 cm x cm x 10-2 m 1 cm U.0_3_4 d54

Conversion Factor Method (Working with square units) Strategy Plan: Unit Analysis Map: cm to m Cancels cm L = 3 cm2 = = 3 cm x cm x 10-2 m 10-2 m x 1 cm 1 cm U.0_3_4 d55

Conversion Factor Method (Working with square units) Strategy Plan: Unit Analysis Map: L = 3 cm2 = = 3 cm x cm x 10-2 m 10-2 m x = 3 x10-2 x10-2 m2 = 3 x10(-2-2) m2 = 1 cm 1 cm = 3 x10-4 m2 U.0_3_4 d56

Conversion Factor Method (Working with cubic dimensions) U.0_3_4 d57

Conversion Factor Method (Proposed exercices) U.0_3_4 d58

Conversion Factor Method (Proposed exercices) U.0_3_4 d59