EQUILIBRIO DE TRASLACIÓN Y ROTACIÓN

Slides:



Advertisements
Presentaciones similares
Capítulo 5A. Momento de torsión
Advertisements

TORQUE PALANCAS.
CINEMÁTICA DEL SÓLIDO RÍGIDO
Palancas (maquinas simples)
ONDAS 17/08/2011 Elaboró: Yovany Londoño.
Fuerzas 01/08/2011 Elaboró: Yovany Londoño.
SALIDA PEDAGOGICA PARQUE COMFAMA EN ARVI PARA EL GRADO 6º
Fuerzas 01/08/2011 Elaboró: Yovany Londoño.
Fuerzas 01/08/2011 Elaboró: Yovany Londoño.
ONDAS 06/08/2011 Elaboró: Yovany Londoño.
EQUILIBRIO DE TRASLACIÓN Y ROTACIÓN
Semana 3 sesión 1 Momento Angular
¿PORQUÉ SE MUEVEN LOS Objetos?
Equilibrio de un Cuerpo Rígido
TEMA 2: ESTRUCTURA Y FUNCIONES DEL SISTEMA BIOMECÁNICO DEL APARATO LOCOMOTOR Mtra. Lorenia López Araujo VER VIDEO_ESTRUCTURA.
DEPARTAMENTO DE TECNOLOGÍA
MAQUINAS SIMPLES Y MAQUINAS COMPUESTAS
Máquinas simples.
Unidad de Maquinas Simples
Celia González González
Física del movimiento: Palancas
Material de apoyo pedagógico.
Máquinas Simples Prof. Rebeca Quirós Rodríguez
MAQUINAS SIMPLES Una máquina simple es un artefacto mecánico que transforma una fuerza aplicada en otra resultante, modificando la magnitud de la fuerza,
PALANCA.
MAQUINAS SIMPLES.
ESTÁTICA Concepto: es la rama de la física que estudia las condiciones en las cuales un cuerpo se encuentra en equilibrio. Equilibrio.
Transmisión de movimiento
Dadme un punto de apoyo y moveré el mundo. (Arquímedes)
Profesor: Carlos Alvarado de la Portilla
2.6. Momento de una fuerza El momento de una fuerza puede definirse como el efecto de giro que se produce sobre un cuerpo alrededor de un punto o eje,
TORQUE Y ROTACION Al aplicar una fuerza a un objeto que posea una eje de rotación, este comenzará a girar, esta acción se denomina torque Torque: Magnitud.
Momento angular y su conservación.
Rotación de un cuerpo alrededor de un eje fijo
TEMA 2.3. MOMENTO DE UNA FUERZA RESPECTO A UN PUNTO.
Diagrama de Cuerpo Libre
Unidad 2:Estática del Cuerpo Rígido
Unidad 2:Estática del Cuerpo Rígido
Otra mecanismo simple….
Christian donoso juan esteban Ospina erik romero 905
CINÉTICA LINEAL.

Cap. 10 Rotación.
CENTRO DE MASAS CENTRO DE GRAVEDAD.
LAS FUERZAS DINÁMICA.
TRANSFORMACIONES ISOMÉTRICAS
MOMENTO DE TORSIÓN Y EQUILIBRIO ROTACIONAL.
Física: Momento de Inercia y Aceleración Angular
Mecanismos de transmisión de movimiento
Equilibrio del cuerpo rígido
MOVIMIENTO DEL SOLIDO RIGIDO
CONCEPTO DE TORQUE “Torque” ( ) palabra que viene del latin torquere, torcer. Se define como un producto vectorial o cruz entre dos magnitudes vectoriales.
MECANISMOS DE TRANSFORMACION Y TRANSMISION DE MOVIMIENTO
Camila Martínez Dara Pineda
PALANCAS.
MÁQUINAS SIMPLES: La Palanca
Máquina simple Es un artefacto mecánico que transforma un movimiento en otro diferente, valiéndose de la fuerza recibida para entregar otra de magnitud,
CLASE Nº 7 TORQUE.
EQUILIBRIO DEL CUERPO RIGIDO
FUERZAS.
Expo No.2 Ontiveros Roque Parra Villalobos -Robot Cartesiano
Unidad 1:Estática del Cuerpo Rígido
3ª EVALUACIÓN Mecanismos Leire Urdíroz y Leyre Sánchez.
las matemáticas en la fisioterapia
Carlota Triguero y Maxima Fater
  No cambian el tipo de movimiento, sólo modifican sus valores de fuerza, velocidad.  Los mecanismos de transmisión pueden ser, a su vez, agrupados.
ESTÁTICA EQUILIBRIO.
Mecanismos de transmisión de movimiento
CLASE N°9: ESTÁTICA Fuerza y momento de fuerza Maquinas simples.
EQUILIBRIO. ESTÁTICA Rama de la física que se preocupa por el estudio de los cuerpos que se encuentran en equilibrio de traslación y de rotación.
Transcripción de la presentación:

EQUILIBRIO DE TRASLACIÓN Y ROTACIÓN 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño EQUILIBRIO ROTACIONAL Si observamos un Cuerpo que se sostiene desde un Punto, veremos que tenemos que balancearlo bien para evitar que ruede en una o la otra dirección. Concluimos que existe un punto desde el cual podemos equilibrar el cuerpo no presentando rotación alguna. Este Punto se denomina Centro de Masa. 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño Para determinar el punto de equilibrio podemos balancear el cuerpo en cada uno de sus ejes. Si lo orientamos de una forma y encontramos la Posición en que se mantiene en equilibrio habremos identificado una recta imaginaria sobre el cual se encuentra el Centro de Masa. 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño Una vez se ha determinado uno de las coordenadas del Centro de Masa se rota el objeto y busca la próxima coordenada del Centro de Masa. 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño De esta forma se determina un Punto que denominamos Centro de Masa 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño De la discusión anterior se concluye que toda Fuerza ⃗F se puede descomponer en dos partes. Una primera ⃗F∥ a lo largo de la linea que une el Punto de Apoyo (PA) al Centro de Masa (CM) del Cuerpo. La segunda componente es perpendicular ⃗F⊥ a la linea que une el Punto de Apoyo con el Centro de Masa. La primera origina la Traslación del Cuerpo mientras que la segunda su Rotación. 06/08/2011 Elaboró: Yovany Londoño

CONDICIONES DE EQUILIBRIO Diagrama de fuerzas sobre el cuerpo libre. Descripción cualitativa del equilibrio de traslación y rotacion de un cuerpo. EQUILIBRIO TRASLACIONAL (ΣF = 0). Caso de fuerzas en una y dos dimensiones. 2. EQUILIBRIO ROTACIONAL Torque y segunda condición de equilibrio (Σ t = 0). 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño Si recordamos nuestra infancia en que jugábamos con balancines sabemos que una de las formas de inclinar lo hacia nuestro lado era ’echándose para atrás’. 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño Si analizamos el caso del Balancín veremos que si este tiene una inclinación de en en cada extremo de largos d1 y d2 se aplican Fuerzas F1 y F2 existirán fuerzas perpendiculares F1⊥ y F2⊥ que lo trataran de rotar. La Fuerza F1⊥ trata de girar el balancín en el sentido contrario al movimiento del reloj mientras que la fuerza F2⊥ lo hace en el sentido positivo. 06/08/2011 Elaboró: Yovany Londoño

Torque

Torque de una fuerza La propiedad de la fuerza para hacer girar al cuerpo se mide con una magnitud física que llamamos torque o momento de la fuerza. 24/03/2017 Yuri Milachay

Elaboró: Yovany Londoño TORQUE (τ) Experimentado uno encuentra que el sistema esta en equilibrio y no rota si F1⊥d1 = F2⊥d2 (1) Por ello se define como Torque T = rF⊥ (2) o en forma vectorial ⃗T =⃗r × ⃗F (3) con r la distancia entre el Centro de Masa y el Punto de Apoyo. 06/08/2011 Elaboró: Yovany Londoño

Momento o torque de una fuerza Producto de la distancia por la componente perpendicular de la fuerza o f d ┴=rsenf Producto de la fuerza por la componente perpendicular de la distancia 24/03/2017 Yuri Milachay

Momento de una fuerza o torque Podemos definir el torque como el producto de la fuerza por su brazo de palanca 24/03/2017 Yuri Milachay

Elaboró: Yovany Londoño MAQUINAS SIMPLES: Las máquinas son dispositivos que multiplican una fuerza o bien cambian la dirección de una fuerza, entre las máquinas simples podemos citar a las palancas, las poleas, gatas hidráulicas, tornos, planos inclinados. 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño PALANCAS Fa Fa Fa Fl Fl Fl Fl Primera Clase Segunda clase Tercera clase 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño PALANCAS Según las posiciones que tengan las dos fuerzas y el fulcro o punto de apoyo o pivote, se definen tres clases de palancas: Primera clase: el fulcro se encuentra entre ambas fuerzas Segunda clase: la carga está entre el fulcro y el esfuerzo. Tercera clase: el esfuerzo está entre el fulcro y la carga. 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño PALANCAS EN EL CUERPO 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño PRIMERA CLASE FULCRO xa xL FL M Fa 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño SEGUNDA CLASE 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño TERCERA CLASE Músculo bíceps 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño TERCERA CLASE 06/08/2011 Elaboró: Yovany Londoño

PALANCAS EN EL CUERPO HUMANO 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño En la figura Nº3 se muestra el brazo extendido de una persona que sostiene en su mano una esfera de acero de masa m = 4 kg. Bajo esta situación se puede determinar el torque ó momento de la fuerza peso de la esfera respecto del punto C que pasa por la muñeca, el torque respecto del codo (B) y el torque respecto del hombro (A). 8 cm 24 cm 30 cm A A C C mg B B 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño Las poleas Al igual que las palancas, son máquinas simples. Una polea no es más que una rueda que puede girar libremente alrededor de un eje que pasa por su centro. Un sistema de poleas es un dispositivo con el cual se puede variar la dirección y la magnitud de una fuerza para obtener alguna ventaja mecánica. Una sola polea fija se utiliza para cambiar la dirección y sentido de una fuerza, mientras que una combinación de varias poleas puede utilizarse para reducir la fuerza que se necesita para levantar una carga pesada. 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño POLEA FIJA 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño POLEA MOVIL F = P/2 06/08/2011 Elaboró: Yovany Londoño

Elaboró: Yovany Londoño COMBINACION DE POLEAS P F = P/2 06/08/2011 Elaboró: Yovany Londoño