La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

EQUILIBRIO DE TRASLACIÓN Y ROTACIÓN

Presentaciones similares


Presentación del tema: "EQUILIBRIO DE TRASLACIÓN Y ROTACIÓN"— Transcripción de la presentación:

1 EQUILIBRIO DE TRASLACIÓN Y ROTACIÓN
24/03/2017 Yovany Londoño

2 EQUILIBRIO ROTACIONAL
Si observamos un Cuerpo que se sostiene desde un Punto, veremos que tenemos que balancearlo bien para evitar que ruede en una o la otra dirección. Concluimos que existe un punto desde el cual podemos equilibrar el cuerpo no presentando rotación alguna. Este Punto se denomina Centro de Masa. 24/03/2017 Yovany Londoño

3 Para determinar el punto de equilibrio podemos balancear el cuerpo en cada uno de sus ejes. Si lo orientamos de una forma y encontramos la Posición en que se mantiene en equilibrio habremos identificado una recta imaginaria sobre el cual se encuentra el Centro de Masa. 24/03/2017 Yovany Londoño

4 Una vez se ha determinado uno de las coordenadas del Centro de Masa se rota el objeto y busca la próxima coordenada del Centro de Masa. 24/03/2017 Yovany Londoño

5 De esta forma se determina un Punto que denominamos Centro de Masa
24/03/2017 Yovany Londoño

6 De la discusión anterior se concluye que toda Fuerza ⃗F se puede descomponer en dos partes. Una primera ⃗F∥ a lo largo de la linea que une el Punto de Apoyo (PA) al Centro de Masa (CM) del Cuerpo. La segunda componente es perpendicular ⃗F⊥ a la linea que une el Punto de Apoyo con el Centro de Masa. La primera origina la Traslación del Cuerpo mientras que la segunda su Rotación. 24/03/2017 Yovany Londoño

7 CONDICIONES DE EQUILIBRIO
Diagrama de fuerzas sobre el cuerpo libre. Descripción cualitativa del equilibrio de traslación y rotacion de un cuerpo. EQUILIBRIO TRASLACIONAL (ΣF = 0). Caso de fuerzas en una y dos dimensiones. 2. EQUILIBRIO ROTACIONAL Torque y segunda condición de equilibrio (Σ τ = 0). 24/03/2017 Yovany Londoño

8 Si recordamos nuestra infancia en que jugábamos con balancines sabemos que una de las formas de inclinar lo hacia nuestro lado era ’echándose para atrás’. 24/03/2017 Yovany Londoño

9 Si analizamos el caso del Balancín veremos que si este tiene una inclinación de en en cada extremo de largos d1 y d2 se aplican Fuerzas F1 y F2 existirán fuerzas perpendiculares F1⊥ y F2⊥ que lo trataran de rotar. La Fuerza F1⊥ trata de girar el balancín en el sentido contrario al movimiento del reloj mientras que la fuerza F2⊥ lo hace en el sentido positivo. 24/03/2017 Yovany Londoño

10 Torque o Momento

11 Torque de una fuerza La propiedad de la fuerza para hacer girar al cuerpo se mide con una magnitud física que llamamos torque o momento de la fuerza. 24/03/2017 Yovany Londoño

12 TORQUE (τ) Experimentado uno encuentra que el sistema esta en equilibrio y no rota si F1⊥d1 = F2⊥d2 (1) Por ello se define como Torque T = rF⊥ (2) o en forma vectorial ⃗T =⃗r × ⃗F (3) con r la distancia entre el Centro de Masa y el Punto de Apoyo. 24/03/2017 Yovany Londoño

13 Momento o torque de una fuerza
Producto de la distancia por la componente perpendicular de la fuerza o f d ┴=rsenf Producto de la fuerza por la componente perpendicular de la distancia 24/03/2017 Yovany Londoño

14 Momento de una fuerza o torque
Podemos definir el torque como el producto de la fuerza por su brazo de palanca 24/03/2017 Yovany Londoño

15 MAQUINAS SIMPLES: Las máquinas son dispositivos que multiplican una fuerza o bien cambian la dirección de una fuerza, entre las máquinas simples podemos citar a las palancas, las poleas, gatas hidráulicas, tornos, planos inclinados. 24/03/2017 Yovany Londoño

16 PALANCAS Fa Fa Fl Fl Fl Fl Primera Clase Segunda clase Tercera clase
24/03/2017 Yovany Londoño

17 PALANCAS Según las posiciones que tengan las dos fuerzas y el fulcro o punto de apoyo o pivote, se definen tres clases de palancas: Primera clase: el fulcro se encuentra entre ambas fuerzas Segunda clase: la carga está entre el fulcro y el esfuerzo. Tercera clase: el esfuerzo está entre el fulcro y la carga. 24/03/2017 Yovany Londoño

18 24/03/2017 Yovany Londoño

19 PALANCAS EN EL CUERPO 24/03/2017 Yovany Londoño

20 PRIMERA CLASE FULCRO xa xL FL M Fa 24/03/2017 Yovany Londoño

21 SEGUNDA CLASE 24/03/2017 Yovany Londoño

22 TERCERA CLASE Músculo bíceps 24/03/2017 Yovany Londoño

23 TERCERA CLASE 24/03/2017 Yovany Londoño

24 En la figura Nº3 se muestra el brazo extendido de una persona que sostiene en su mano una esfera de acero de masa m = 4 kg. Bajo esta situación se puede determinar el torque ó momento de la fuerza peso de la esfera respecto del punto C que pasa por la muñeca, el torque respecto del codo (B) y el torque respecto del hombro (A). 8 cm 24 cm 30 cm A A C C mg B B 24/03/2017 Yovany Londoño

25 Las poleas Al igual que las palancas, son máquinas simples. Una polea no es más que una rueda que puede girar libremente alrededor de un eje que pasa por su centro. Un sistema de poleas es un dispositivo con el cual se puede variar la dirección y la magnitud de una fuerza para obtener alguna ventaja mecánica. Una sola polea fija se utiliza para cambiar la dirección y sentido de una fuerza, mientras que una combinación de varias poleas puede utilizarse para reducir la fuerza que se necesita para levantar una carga pesada. 24/03/2017 Yovany Londoño

26 POLEA FIJA 24/03/2017 Yovany Londoño

27 POLEA MOVIL F = P/2 24/03/2017 Yovany Londoño

28 COMBINACION DE POLEAS P F = P/2 24/03/2017 Yovany Londoño


Descargar ppt "EQUILIBRIO DE TRASLACIÓN Y ROTACIÓN"

Presentaciones similares


Anuncios Google