NOMBRE DEL ALUMNO: Mariana Quiñones Armendáriz

Slides:



Advertisements
Presentaciones similares
Funciones Presentado por: Tammy Roterman y Orli Glogower
Advertisements

Funciones Psu Matemáticas 2012.
FUNCIONES. FUNCIONES ELEMENTALES.
Funciones Presentado por: Tammy Roterman y Orli Glogower
Clasificación de funciones
Funciones. Concepto de función Dominio e imagen de una función
FUNCIONES REALES DE VARIABLES REALES
INICIOESQUEMA INTERNETACTIVIDAD MATEMÁTICAS 1º Bach. CT Unidad 7: Funciones ANTERIOR SALIR 7 Funciones INTERNET LECTURA INICIAL ESQUEMA Las funciones no.
PPTCEG035EM31-A16V1 Función afín y función lineal. EM-31.
ESCUELA: NOMBRES: ÁLGEBRA FECHA: Ciencias de la Computación Ing. Ricardo Blacio OCTUBRE 2009 – FEBRERO
Funciones ¿Qué es una función? Formas de representación Propiedades Clasificación Tipos Generalidades.
Materia: Pensamiento Algébrico Profesora: Gabriela Aidee Cadena Lara Grado y Grupo: 1°”7” Integrantes: Raúl Alejandro Pérez Reyes Mónica Itzel Reyes Morales.
Tipos de funciones Marcela mayen#14 4b.
Nancy Margarita Gutiérrez Chavira
FUNCIONES, PROSESAMIENTO ELEMENTAL DE DATOS
Funciones.
Funciones y gráficas ITZEL ALEJANDRA LOZOYARODRIGUEZ
ALUMNO: ARELY GUTIERREZ LOZOYA
Funciones y gráficas Daniel Ordoñez Aguirre Licenciatura EN DERECHO
San Pedro Sac. San Marcos Guatemala.
FUNCIONES, PROCESAMIENTO ELEMENTAL DE DATOS
UPC Derivada de una función. Aplicaciones
MATEMÁTICAS 1 TAREA 2 MIGUEL ÁNGEL RODRÍGUEZ GUTIÉRREZ.
ALUMNO: OMAR DAVID MOLINA GARCIA
ALUMNO:MANUEL ANTONIO GIL CHAVEZ
NOCIONES ELEMENTALES DE LOGICA Y TERIA DE CONJUNTOS
FUNCIONES, PROCESAMIENTO ELEMENTAL DE DATOS
FUNCIONES, PROCESAMIENTO ELEMENTAL DE DATOS
Tarea II Matemáticas Francisco Raul Gandara Villaverde
SANCHEZ RODRIGUEZ CARLOS ALEJANDRO
Apuntes Matemáticas 2º ESO
Funciones Potencias, exponenciales y logarítmicas.
ESCUELA POLITECNICA DEL EJERCITO
Tarea 2. MATEMATICAS I FUNCIONES, PROCESAMIENTO ELEMENTAL DE DATOS
Familia de las funciones
Alumno: francisco Ismael huerta moreno
FUNCIONES ELEMENTALES
FUNCIONES, PROCESAMIENTO ELEMENTAL DE DATOS
Funciones, procesamiento elemental de datos
FUNCION LINEAL Y ECUACION DE 1ª GRADO
Adriana Fernández 4to bach d #5
FUNCIONES LINEALES Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya.
APLICACIONES DE LAS FUNCIONES
FUNCIONES ELEMENTALES
Universidad Tecnológica del Perú
Temas grado once, año Funciones
Relaciones dadas por tablas
U.D. 13 * 3º ESO E.AP. FUNCIONES LINEALES Y CUADRÁTICAS
Matemáticas 2º Bachillerato C.T.
TASA DE VARIACIÓN Dada una función cualquiera f(x), se define su tasa de variación media en un intervalo [a, b], como: TVM[a, b] = var i ac ón de f ( x.
FUNCIONES ELEMENTALES I
Apuntes de Matemáticas 3º ESO
Ecuación de la recta. Elementos de ecuación de la recta En una ecuación dela recta de tipo y=mx+c se analizan los siguientes elementos: m es la pendiente.
La recta y la función lineal
Funciones Prof. M. Alonso
PUNTO MEDIO PENDIENTE DE DE UNA RECTA UN SEGMENTO ÁNGULOS DE
Tema 5. Funciones reales de variable real
COORDENADAS RECTANGULARES POLARES CILINDRICAS ESFERICAS.
Conceptos generales de trigonometría. SISTEMAS DE COORDENADAS RECTANGULARES Abscisa positiva Ordenada positiva origen Ordenada negativa Abscisa negativa.
Área Académica: Matemáticas Tema: FUNCIONES Profesor: Jorge Pérez Cabrera Periodo: Enero-Junio 2015.
U.D. 12 * 3º ESO E.AC. FUNCIONES LINEALES Y CUADRÁTICAS
TRIGONOMETRIA Lic. Nelly Soliz Carrasco. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las.
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BTO A
Área Académica: Matemáticas (Trigonometría) Tema: Gráfica de las Funciones Trigonométricas. Profesor(a): Juana Inés Pérez Zárate Periodo: Enero – Junio.
Euler - Matemáticas I Tema: 14 1 Funciones elementales Final Funciones lineales Las funciones de la forma y = ax + b, donde a, b  R se llaman funciones.
Esquema Información obtenida a partir de f(x) Dominio de f(x) Encontrado el dominio de f(x) se tienen que excluir de la representación gráfica todos.
CAPITULO I Límite de Funciones de una Variable 1.Límites de funciones reales de una variable. Límites mediante la gráfica. Límites por aproximaciones.
DR. VÍCTOR MORÁN CÁCERES MSC 1.1 Funciones en el plano: definición, dominio, rango, variables, clasificación, operaciones.
Matemáticas KELLY JOHANA MONTERROSA Actividad 5 - Parte II - Reconociendo proporcionalidad psicología Bogotá 2019.
Repaso Funciones MATEMÁTICA II F.C.E. - UNCuyo 2019.
Transcripción de la presentación:

NOMBRE DEL ALUMNO: Mariana Quiñones Armendáriz NOMBRE DEL ALUMNO: Mariana Quiñones Armendáriz. MATERIA: Matemáticas 1 MATRICULA: 517064 FECHA: 14/03/2017

FUNCIONES LINEALES FUNCIONES LINEALES Entre los tipos de funciones posibles hay uno especialmente importante, el de las funciones cuya gráfica es una recta o parte de ella. Los fenómenos que describen se caracterizan porque la variación de la variable dependiente es proporcional a la variación de la variable independiente. Una función lineal se expresa de la forma, f( x ) = mx + b con m y b números reales. El dominio de una función lineal es el conjunto de los números reales. Las ecuaciones y = mx representan rectas que pasan por el origen de coordenadas, se llaman funciones de proporcionalidad. ¿Cómo dibujar la función y x 4 1 = ? Sabemos que pasa por (0,0); basta obtener otro punto, se consigue dando un valor particular a x, tomemos x=4, entonces 4 1 4 1 y = ⋅ = . Es una recta que pasa por (0,0) y (4,1) como la del gráfico. La función de ecuación y= f(x)= x es de proporcionalidad y se denomina función identidad.

FORMULAS EN LAS FUNCIONES LINEALES Observemos las fórmulas en las funciones lineales de los ejemplos estudiados. En todos aparece la variable dependiente (llamémosla y) igual a un número sumado a otro que multiplica a la variable independiente (llamémosla x). Por ejemplo, en la función costo del gas consumido (Ejemplo 7) la fórmula es: La variable dependiente c resulta igual al número 7,74 sumado al producto de 0,15 por g, que es la variable independiente. En el Ejemplo 8 con Pedro en la bicicleta, la fórmula es: La variable dependiente d resulta igual a 2000 sumado al producto de -100 por t, que es la variable independiente. Usted puede comprobar lo mismo en el ejemplo de las vías del tren.

TRADUCCIONES ENTRE FORMULAS TABLAS Y GRAFICAS Le proponemos que escriba la fórmula de cada función lineal de las estudiadas hasta aquí al lado de su correspondiente gráfica, y trate de descubrir alguna relación entre el número que llamamos a en la fórmula y = a + b . x y algún punto especial de la gráfica. Los matemáticos descubren muchas propiedades de las funciones, de los números, de las figuras geométricas gracias a su curiosidad y a su capacidad de observación. Si ya intentó una respuesta, compárela con la nuestra que le presentamos a continuación. También existe una relación entre el número b de la fórmula, la inclinación o pendiente de la recta, y la variación constante en las funciones lineales..

FUNCION INVERSA Se llama función inversa o reciproca de f a otra función f−1 que cumple que: Si f(a) = b, entonces f−1(b) = a. Veamos un ejemplo a partir de la función f(x) = x + 4 Podemos observar que: El dominio de f−1 es el recorrido de f. El recorrido de f−1 es el dominio de f. Si queremos hallar el recorrido de una función tenemos que hallar el dominio de su función inversa. Si dos funciones son inversas su composición es la función identidad. (f o f−1) (x) = (f−1 o f) (x) = x Las gráficas de f y f-1 son simétricas respecto de la bisectriz del primer y tercer cuadrante.

FUNCION POTENCIA Función potencial ·  Función potencial de exponente natural  Llamaremos función potencial de exponente natural a la función   ¨Es continua y estrictamente creciente en [0,+¥] . ¨Su inversa existe en [0,+¥[, es continua y estrictamente creciente ·  Función potencial de exponente racional      Llamaremos función potencial de exponente racional a la función  ¨El dominio depende de su exponente. ¨La función potencial y = xq, q Î Q+ es continua y estrictamente creciente en [0,+¥[ . ¨La función potencial y = xq, q Î Q- es continua y estrictamente decreciente en [0,+¥[ .  Propiedades: En las funciones potenciales, tanto si el exponente es natural como racional, se cumplen las siguientes propiedades: ·  Función potencial de exponente real       Llamaremos función potencial de exponente real a la función ¨La función potencial y = xa, a Î R+ es continua y estrictamente creciente en [0,+¥[ . ¨La función potencial y = xa, a Î R- es continua y estrictamente decreciente en [0,+¥[ .

FUNCION EXPONENCIAL Función exponencial Llamaremos función exponencial a toda función de la forma:  ¨Es continua en R:  ¨ ¨Si a>1, es estrictamente creciente en R . Y se cumple: ¨Si a<1, es estrictamente decreciente en R . Y se cumple: ¨Si a=1, es constante en R .  ·  Función exponencial de variable racional       Dado el real positivo a diremos que ax es una función exponencial de variable racional y de base a, a la aplicación de Q en R , de forma que a cada racional x le hace corresponder ax.   Ejemplo: La representación de la función  en el intervalo [-4,6] es la siguiente      Notar que si la base es mayor que la unidad, la función es estrictamente creciente y si la base pertenece al intervalo abierto ]0,1[  entonces es estrictamente decreciente.  Un caso particular es tomar la base a = e » 2.71  y se denota ex ; la representación de la función y = ex en el  intervalo [-1,4] es:  Ejemplo: comprobar Demostrar que toda ley de crecimiento exponencial K(t) = K0at, K0  Î R, a Î R+ - {0}, se puede poner de la forma K(t) = K0ebt Dado el real positivo a, siempre existe un número real b de forma que a = eb   ·  Propiedades algebraicas de la función exponencial  ·  Ecuaciones exponenciales Se llaman ecuaciones exponenciales aquellas ecuaciones en las que la incógnita figura como exponente de una potencia.  Para su resolución tomamos logaritmos en los dos miembros en una base cualquiera, (por ejemplo en base decimal) y aplicamos las propiedades de éstos.  Ejemplo: Resuelve la siguiente ecuación:   Tomando logaritmos decimales a los dos miembros:

FUNCION LOGARITMICA Función logarítmica como inversa de la exponencial. Las funciones y = bx y y = logb(x)para b>0 y b diferente de uno son funciones inversas. Así que la gráfica de y = logb(x) es una reflexión sobre la recta y = x de la gráfica de y = bx.

FUNCIONES PERIODICAS Es una función cuya representación gráfica se repite a intervalos regulares. Esta propiedad las hace muy útiles para entender la multitud de fenómenos periódicos que se dan en nuestro mundo. el día, la noche, las olas del mar, los latidos del corazón, el movimiento de la cuerda en una guitarra, todos ellos son ejemplos de fenómenos periódicos. Su estudio matemático se hizo posible gracias al uso de las funciones seno y coseno. Aplicación: Las aplicaciones de las razones trigonométricas en un triángulo rectángulo incluyen ángulos de elevación, ángulos de depresión y rumbos usados en la navegación marítima  aérea.

SENO La función seno definida por : f(X)= sen x Características: .       Dominio : R : [-1,1] .       Periodo de la función seno es 2π rad.        La función y = sen x es impar, ya que sen(-x) = -sen x, para todo x en R.        La grafica de y =sen x intercepta al eje x en los puntos cuya ascisa son: x=n π para todo numero entero n.        El valor máximo de sen x es 1, y el mínimo valor es -. La amplitud de la función y = sen x es 1.        

COSENO La función coseno es la función definida por: f(X)=cos x Características Dominio: R Rango : [-1,1]. Periodo de la función seno es 2π rad. La función y = cos xes par, ya que cos (-x) = cos x, para todo x En R . La grafica de y = cos x intercepta al eje x en los puntos cuyas abscisas son: x = 2π + nπ, para todo numero entero n. El valor máximo de cos x es 1, y el valor mínimo es -1. La amplitud de la función y = cos x es 1.

TANGENTE La función tangente es la función definida por: f (X) = tan x. Características:  Dominio R - { π /2 + nπ/∈ z } Rango R. 2.       La función tangente es una función periódica, y su periodo es π.   a función y = tan x es una función impar, ya que tan (-x)  = -tan x. La grafica de y = tan x intercepta al eje x en los puntos cuyas abscisas son : x = n π, para todo numero entero n.

COORDENADAS POLARES Las coordenadas polares o sistemas polares son un sistema de coordenadas bidimensional en el que cada punto del plano se determina por una distancia y un ángulo. Este sistema es ampliamente utilizado en física y trigonometría. De manera más precisa, como sistema de referencia se toma: (a) un punto O del plano, al que se llama origen o polo; y (b) una recta dirigida (o rayo, o segmento OL) que pasa por O, llamada eje polar (equivalente al eje x del sistema cartesiano). Con este sistema de referencia y una unidad de medida métrica (para poder asignar distancias entre cada par de puntos del plano), todo punto P del plano corresponde a un par ordenado (r, θ) donde r es la distancia de P al origen y θ es el ángulo formado entre el eje polar y la recta dirigido que va de O a P. El valor θ crece en sentido anti horario y decrece en sentido horario. La distancia r (r ≥ 0) se conoce como la «coordenada radial» o «radio vector», mientras que el ángulo es la «coordenada angular» o «ángulo polar». En el caso del origen, O, el valor de r es cero, pero el valor de θ es indefinido. En ocasiones se adopta la convención de representar el origen por (0,0º).