Geometría Analítica LA ELIPSE DEFINICIÓN ELIPSES A NUESTRO ALREDEDOR

Slides:



Advertisements
Presentaciones similares
Parábola.
Advertisements

Geometría Analítica LA ELIPSE DEFINICIÓN ELIPSES A NUESTRO ALREDEDOR
Elipse.
M. en C. René Benítez López
La hipérbola Matemáticas Preuniversitarias
ELIPSE E HIPERBOLA.
HIPÉRBOLA.
La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las.
La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las.
ELIPSE: es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante.
Profesora: Eva Saavedra G.
Cónicas. Secciones cónicas Circunferencia
GEOMETRIA ANALITICA.
M. en C. René Benítez López
Secciones Cónicas: LA ELIPSE.
Tema 11 LA HIPÉRBOLA V y V’: Vértices LL’: Lado recto c : centro
KELLY FERNANDA CALA PARRA LUZ DANIELA CAMPO TORRES I-3
La Elipse Tema 10 (h,k) k h B B’ D D’ E E’ L L’ P F’ V’ V A’ l’ c l A
LA ELIPSE Y LA HIPÉRBOLA
LA ELIPSE Y LA HIPÉRBOLA PROBLEMAS PROPUESTOS UNIDAD 14.
Una hipérbola es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo.
Propiedad Intelectual Cpech PPTCAC042MT21-A16V1 Plano y espacio Propiedad Intelectual Cpech ACOMPAÑAMIENTO ANUAL BLOQUE 21.
LUGARES GEOMÉTRICOS Y CÓNICAS Por Jorge Sánchez LUGAR GEOMÉTRICO Conjunto de puntos del plano que cumplen una determinada condición.
Ver VIDEO Aquí.
Cuerpos geométricos Calcular áreas laterales de conos y pirámides en la resolución de problemas.
Parábola. Al punto V se le denomina vértice de la parábola, en este caso tiene coordenadas (0,0). A la recta perpendicular a la directriz, que contiene.
C APÍTULO 5: L A H IPÉRBOLA Profr. Eliud Quintero Rodríguez.
C APÍTULO 5: L A H IPÉRBOLA Profr. Eliud Quintero Rodríguez.
Tipos de funciones Marcela mayen#14 4b.
Geometría Espacial II.
Tema 0 Álgebra vectorial.
Geometría Analítica Rectas y cónicas..
Ing. José Alberto Salgado Coussin
TRAZADO GEOMETRICO DE CONICAS
Liceo Luis Cruz Martínez
FUNCIONES, PROCESAMIENTO ELEMENTAL DE DATOS
Apuntes de Matemáticas 3º ESO
MEDIDA DE LONGITUDES U. D. 8 * 4º ESO E. Angel Prieto Benito
Álgebra y Modelos Analíticos Prof. Margarita Farias N 3° E.M.
Mediatriz de un segmento
Eduardo Quintana. Diego Soto. Gonzalo Sepúlveda. III ½ 2005.
AREAS SOMBREADAS.
REPASO I PERIODO DORIS LÓPEZ PERALTA.
LA ELIPSE.
3 reglas básicas que se cumplen SIEMPRE
GEOMETRÍA PLANA.
SISTEMAS DE REPRESENTACIÓN 2º CURSO ITOP
LA ELIPSE Integrantes: María Sarem Fátima Gabriela Edith Paola Bibiana.
Apuntes de Matemáticas 3º ESO
Conceptos básicos de Geometría Analítica
EXAMENES PAU JULIO Fase General
Hipérbola Índice La hipérbola. La hipérbola como lugar geométrico. Elementos de la hipérbola. Ecuación analítica de la hipérbola. Ecuación analítica.
EXAMENES PAU JULIO Fase Especifica
Capítulo 3: La Elipse.
Unidad 2: Secciones cónicas
GEOMETRIA LA PARABOLA.
MATEMÁTICAS 2 Cónicas: La Elipse.
Capítulo 5: La Hipérbola
TAREA INTEGRADORA 1.- Hallar los elementos característicos y la ecuación reducida de la elipse de focos: F'(−3,0) y F(3, 0), y su eje mayor mide
Circunferencia y circulo
DEPARTAMENTO DE MATEMÁTICAS
OBJETIVO DE LA CLASE: Conocer y determinar la ecuación de la Circunferencia y de la parábola, y obtener sus elementos. 1.
Hipérbola Índice La hipérbola. La hipérbola como lugar geométrico. Elementos de la hipérbola. Ecuación analítica de la hipérbola. Ecuación analítica.
La elipse. La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es constante.
La hipérbola.
PLANO CARTESIANO PARES ORDENADOS.
Apuntes de Matemáticas 3º ESO
CIRCUNFERENCIA.
EXAMENES PAU 2005.
LA ELIPSE Y LA HIPÉRBOLA UNIDAD 14. Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la elipse.
Transcripción de la presentación:

Geometría Analítica LA ELIPSE DEFINICIÓN ELIPSES A NUESTRO ALREDEDOR ELEMENTOS DE LA ELIPSE EXCENTRECIDAD ECUACIONES DE LA ELIPSE CANÓNICA ORDINARIA GENERAL EJERCICIOS

Geometría Analítica LA ELIPSE La elipse es el lugar geométrico de todos los puntos P del plano cuya suma de distancias a dos puntos fijos, F1 y F2, llamados focos es una constante positiva. Es decir: Cuando un cono circular recto es seccionado por un plano oblicuo al eje y forma con este eje un ángulo mayor que el ángulo formado por la generatriz con el eje, los puntos pertenecientes igualmente al plano y al cono forman una elipse. http://www.stefanelli.eng.br/webpage/es_elipse.html

Geometría Analítica LA ELIPSE

Geometría Analítica LA ELIPSE

Geometría Analítica ELIPSE A NUESTRO ALREDEDOR

Geometría Analítica ELIPSE A NUESTRO ALREDEDOR

Geometría Analítica PROPIEDAD DE LA ELIPSE Veamos la propiedad fundamental de una elipse. Para ello, marca dos puntos en un plano, separados por ejemplo 4 centímetros. Los llamaremos los focos de la elipse. Escoge ahora un número mayor que 4, pongamos 10. La figura que resulta de marcar todos los puntos cuyas distancias a los focos suman 10 es una Elipse.

. . . . . Geometría Analítica ELEMENTOS DE LA ELIPSE B1 V1 F1 C F2 V2

Geometría Analítica B1 P ELEMENTOS DE LA ELIPSE V1 V2 F1 C F2 Focos. Son los puntos fijos F1 y F2. Eje focal. Es la recta que pasa por los focos. Eje secundario. Es la mediatriz del segmento F1F2. Centro. Es el punto de intersección de los ejes. Radios vectores. Son los segmentos que van desde un punto de la elipse a los focos: PF1 y PF2. Distancia focal. Es el segmento F1F2 de longitud 2c, c es el valor de la semi distancia focal. Vértices. Son los puntos de intersección de la elipse con los ejes: V1, V2, B1, B2.

Geometría Analítica B1 P ELEMENTOS DE LA ELIPSE V1 V2 F1 C F2 B2 Eje mayor. Es el segmento V1V2 de longitud 2a, a es el valor del semieje mayor. Eje menor. Es el segmento B1B2 de longitud 2b, b es el valor del semieje menor. Ejes de simetría. Son las rectas que contienen al eje mayor o al eje menor. Centro de simetría. Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.

Geometría Analítica RELACIÓN ENTRE a, b y c B1 a b V1 V2 F1 C F2 c B2 Ubicaremos un punto P(x;y) en la intersección de la elipse con el eje Y para establecer las siguientes relaciones:

Geometría Analítica EXCENTRICIDAD (e) La excentricidad de la elipse es igual al cociente entre su semi distancia focal y su semieje mayor. Es la razón entre las medidas de c y a, que indica el grado de achatamiento de la elipse. Así, en e = c/a Si e se aproxima a 0, la elipse tiende a adquirir la forma de una circunferencia. Si e se aproxima a 1, la elipse tiende a ser cada vez más achatada.

Geometría Analítica ECUACIONES DE LA ELIPSE Si en la ecuación de la elipse el denominador de x2 es mayor que el denominador de y2, entonces el eje focal coincide con el eje X. En caso contrario, el eje focal coincide con el eje Y. ECUACIONES DE LA ELIPSE ECUACIÓN CANÓNICA DE LA ELIPSE Cuando el eje focal coincide con el eje X con el eje Y F1(-c;0), F2(c;0), V1(-a,0), V2(a;0) F1(0;-c), F2(0;c), V1(0,-a), V2(0;a)

Geometría Analítica ECUACIONES DE LA ELIPSE ECUACIÓN ORDINARIA DE LA ELIPSE Cuando el eje focal coincide con el eje X con el eje Y C(h;k), F(h±c;k), V(h±a;k) C(h;k), F(h;k±c), V(h;k±a)

Geometría Analítica ECUACIONES DE LA ELIPSE ECUACIÓN GENERAL DE LA ELIPSE Partiendo de la ecuación anterior y realizando un proceso similar al realizado para obtener la ecuación general de la circunferencia, se llega a la ecuación general de la elipse, donde los coeficientes A y B deben tener el mismo signo.

Geometría Analítica EJERCICIOS 01. Halla el centro y los focos de la elipse de ecuación:   02. Reduce la ecuación x2 + 4y2 – 6x + 16y + 21= 0 a la forma ordinaria de una elipse y determina las coordenadas del centro, vértices, focos, las longitudes de los ejes mayor y menor, la cuerda focal y la excentricidad. 03. Determina la ecuación de la elipse con centro en el origen, focos en los puntos (0; -3) y (0; 3) y eje mayor igual a 10 u. 04. Halla la ecuación de la elipse de excentricidad 2/3 y cuyos focos son los puntos (-2; 6) y (8; 6).

Geometría Analítica EJERCICIOS 05. Determina la ecuación de la elipse cuyo centro de gravedad está en el origen e coordenadas, el eje mayor a lo largo del eje X, el lado recto es igual a 6 y el valor de la excentricidad es 1/2. 06. Halla la ecuación de la elipse cuya longitud de la cuerda normal (lado recto) es 5 y sus vértices los puntos (-10;0) y (10; 0). 07. Las distancias de un punto P de una elipse a sus focos F1 y F2 son 6 y 8 cm. Calcula e, si m < F1 P F2 = 90º 08. En la elipse 4x2 + 9y2 = 36. El área del triángulo formado por un lado recto y los segmentos que unen los extremos con el centro de la elipse es: 09. Halla la ecuación de la elipse que tiene por centro el punto (2; 4), la distancia del centro a los focos es 3, su excentricidad 1/3 y la elipse es de eje vertical.