Metabolismo de Proteínas y Aminoácidos Prof. MV Enrique C. ALMIRON Bioquímica 2016.

Slides:



Advertisements
Presentaciones similares
Tema 2.4:Metabolismo de las proteínas.
Advertisements

Metabolismo de Proteínas y Asignatura: Bioquímica
Metabolismo de Proteínas y Prof. MV Enrique C. ALMIRON
BIOQUIMICA II: Bioquímica del nitrógeno y regulación genética
EL CATABOLISMO LÍPIDOS PROTEINAS.
SECCIÓN III Metabolismo de proteínas y aminoácidos
METABOLISMO DE LOS AMINOACIDOS
RESPIRACIÓN Y FOTOSÍNTESIS
CICLO DEL ACIDO CITRICO
EL DESTINO DEL GRUPO AMINO DE LOS AMINOÁCIDOS
CATABOLISMO DE LOS AMINOACIDOS
CICLO DEL ACIDO CITRICO
ELIMINACION DEL AMONIACO
Tema 2.4:Digestión, absorción y metabolismo de proteínas y aminoácidos
bacteriología, una rama de la microbiología.
METABOLISMO.
Metabolismo de Proteínas
METABOLISMO DE LOS COMPUESTOS NITROGENADOS
CICLO DE LA UREA Dafne Beltrán Kimberly Mendoza Hugo Barraza Miguel Jurado Kevin Jacquez Angel Mejia.
Digestión, absorción y metabolismo de proteínas y aminoácidos
Fosforilación a nivel de sustrato Fosforilación oxidativa
CICLO DE LA UREA.
Oxidación de aminoácidos, Transaminaciones y Producción de Urea
Desaminacion de los aa:
CATABOLISMO DE PROTEINAS Y CICLO DE UREA
Toxicidad del amoníaco
Metabolismo de aminoácidos Prof Lorena Bruna
Prof. Lorena Bruna Ing. en Alimentos
ANA LILIA TAPIA BARRIENTOS
 Proteína A: Posee alto contenido de los siguientes aminoácidos: Glutamato, Serina, Aspartato y Glicina  Proteína B: Posee un bajo contenido de Glicina,
UNIDAD 6. METABOLISMO 6.1. Visión general del Metabolismo Celular.
POR: Stefany Arango Nicolas Soler Deisy Peña 11-04
Fuente de energía para las células
PROTEINAS.
Respiración Celular.
Ciclo de la Urea.
En personas que han sufrido traumatismos con pérdida de proteínas (heridas, quemaduras, etc.) ¿Cuál de las siguientes proteínas recomendaría? Proteína.
PROTEINAS Y AMINOACIDOS (2) Digestión de Proteínas y Absorción de aminoácidos METABOLISMO Catabolismo del nitrógeno de aminoácidos. Transaminación. Desaminación.
Ciclo del Ácido Cítrico
CATABOLISMO DE LOS AMINOACIDOS
TEMA 13 CATABOLISMO.
METABOLISMO CARBOHIDRATOS. METABOLISMO Definición; Definición; Conjunto de reacciones químicas acopladas entre si, que tienen lugar dentro de todas las.
RESULTADO DE APRENDIZAJE: Explicar las reacciones
1 Clase No. 7 / Unidad No. 2 Lunes 4 de agosto de 2008.
CICLO DE KREBS.
Bolilla 7 Metabolismo de nucleótidos Purinas y pirimidinas Síntesis y degradación. Formación de ácido úrico, aspectos clínicos. Regulación. Recuperación.
PANORÁMICA GENERAL DEL METABOLISMO
Metabolismo intermediario. Introducción al metabolismo
BOLILLA 2 BIOENERGETICA: Transferencia de Energía. Papel del ATP y otros compuestos fosforilados. Reacciones Redox. ENZIMAS DE OXIDO REDUCCION: La oxidación.
Carlos A. Colon Quiles Introduction to Biological Sciences NUC Online.
Metabolismo de Proteínas y Asignatura: Bioquímica
C ADENA RESPIRATORIA Grupo 6.. C ONCEPTO ORGANIZACIÓN F RANCHESCA G AVIRIA.
INTRODUCCIÓN AL ESTUDIO DE LAS REACCIONES QUÍMICAS QUE OCURREN EN EL ORGANISMO METABOLISMO 5º Química 2010 Escuela Técnica ORT.
 METABOLISMO. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo. ENZIMAS: Naturaleza Química. Propiedades Generales. Nomenclatura.
METABOLISMO DE LOS RESIDUOS DE LOS COMPUESTOS NITRIGENADOS.
Fuentes exógenas Fuentes endógenas
Los aminoácidos desempeñan muchas funciones importantes en los seres vivos ya que participan en la biosíntesis de compuestos nitrogenados tales como:
Bolilla 1 Enzimas Caracteres generales. Importancia del estudio de las enzimas en los alimentos. Nomenclatura y clasificación. Coenzimas. Compartimentalización.
PROTEINAS Y AMINOACIDOS (2) Digestión de Proteínas y Absorción de aminoácidos METABOLISMO Catabolismo del nitrógeno de aminoácidos. Transaminación. Desaminación.
OXIDACIÓN CELULAR GLUCÓLISIS Y RESPIRACIÓN CELULAR.
ENZIMAS.
Metabolismo de los lípidos - Digestión y absorción de lípidos.
NH 3 + CO 2 2ATP + GLU 2ADP – Pi CARBAMIL FOSFATO ORNITINACITRULINA ARGINOSUCCINATO ATP ADP PiPi ASP FUMARATO ARGININA H2OH2O UREA ORNITINA CPS-I OTC.
Metabolismo de AMINOÁCIDOS Metabolismo de AMINOÁCIDOS
Integrantes : Arriaga Mendoza Aldo Cucat Limo Cristina Gelacio Mendoza Alex Mio Espino Marlon A. Reyes Alamo Flavio R. Sandoval Chonlon Jose Siesquen Chozo.
Metabolismo de Proteínas y Aminoácidos Prof. MV Enrique C. ALMIRON Bioquímica.
EL DESTINO DEL GRUPO AMINO DE LOS AMINOÁCIDOS
Metabolismo Episodio N° 5: TODO POR LA ENERGÍA
Lic. Deborah E. Rodríguez C.
Metabolismo de Proteínas y Aminoácidos Asignatura: Bioquímica.
Transcripción de la presentación:

Metabolismo de Proteínas y Aminoácidos Prof. MV Enrique C. ALMIRON Bioquímica 2016

Unidad Temática Nº 4: METABOLISMO DE AMINOÁCIDOS Y PROTEINAS Reconocer las principales rutas metabólicas en las que están implicadas las proteínas, los aminoácidos y las moléculas asociadas o derivadas y reconocer las estructuras, propiedades y productos de aminoácidos y bases nitrogenadas en diferentes especies animales.

Introducción Diferencias con glúcidos y lípidos Fuentes de Sustancias Nitrogenadas - Balance Nitrogenado

Introducción Balance Nitrogenado Balance Positivo: la ingesta supera a la pérdida (niños, preñez, etc) Balance Negativo: la pérdida supera la ingesta (cáncer, desnutrición, etc)

Introducción Diferencias con glúcidos y lípidos Fuentes de Sustancias Nitrogenadas - Balance Nitrogenado Digestión

Introducción Proteínas (dieta) Aminoácidos Enzimas Hidrolíticas Absorción Intestinal AA (sangre) AA (tejidos) Sin modificación Transformación Degradación Digestión

Introducción Diferencias con glúcidos y lípidos Fuentes de Sustancias Nitrogenadas - Balance Nitrogenado Digestión Clasificación de los Aminoácidos

AMINOÁCIDOS Fondo metabólico Común o “pool de aa.” Origen Destino de AA Absorción Intestinal Degradación de Proteínas Tisulares Síntesis de aa (hígado) Introducción

AMINOÁCIDOS Fondo metabólico Común o “pool de aa.” Origen Destino de AA Absorción Intestinal Degradación de Proteínas Tisulares Síntesis de aa (hígado) Producción de Energía Síntesis de Compuestos Nitrogenados No proteicos Síntesis de Proteínas Introducción

Catabolismo de los Aminoácidos Separación del grupo amino: Transaminación Desaminación -NH 2 NH 3 Tóxico Urea Hígado ORINA

Catabolismo de los Aminoácidos R. de Transaminación Transferencia del grupo  -amino de un aa a un  -cetoácido. aminoácido 2 + cetoácido 1  cetoácido 2 + aminoácido 1 Es una reacción reversible. Las enzimas catalizadoras utilizan piridoxal fosfato como coenzima. Las transaminasas presentan isoenzimas con diferentes localizaciones.

Catabolismo de los Aminoácidos

Destino final del grupo amino de aminoácidos  - cetoácido +glutamato  -cetoácido + alanina  - ceto glutarato + NH3 UREA A R D C F G Q H I L M S Y W V Cisteína + piruvato + oxaloacetato +  -ceto glutarato Desaminación oxidativa Transaminación GLUTAMINA  -CG  - cetoácido + aspartato Transaminación

Catabolismo de los Aminoácidos R. de Desaminación de Glutamato El  - CG es el sustrato más frecuente en las reacciones de transaminación  Glutamato Glutamato: desaminación y oxidación catalizado por la glutamato deshidrogenasa (enzima de la mitocondrial). La misma enzima cataliza la reacción inversa. Esta enzima utiliza NAD o NADP como coenzima Esta reacción provee la mayor parte del NH 3 tisular.

Catabolismo de los Aminoácidos

Vías Metabólicas del Amoníaco Principal fuente de NH 3 : DO de glutamato El Hígado elimina la casi totalidad de NH 3 NH  -CGGlutamato + H 2 O Vías de eliminación de NH 3 Sintesis de Glutamina Síntesis de Urea

Vías Metabólicas del Amoníaco Síntesis de Glutamina El NH3 puede ser unido al ácido glutámico por acción de la glutamina sintetasa (enzima mitocondrial). La reacción es prácticamente irreversible. Este mecanismo es especialmente importante en cerebro. La reacción inversa ocurre por acción de la glutaminasa (hígado y riñón) y no es la inversión de la formación de glutamina

Vías Metabólicas del Amoníaco Síntesis de Glutamina

Vías Metabólicas del Amoníaco Síntesis de Urea

 UREA +2ADP +2Pi +AMPCO 2 +NH 3 +4 ~P (3 ATP) +Aspartato +H 2 O +PPi + Fumarato Los dos nitrógenos de la urea proceden de cualquiera de los aa que participan en las transaminaciones. El NH 3 que ingresa en la primera reacción proviene ppalmente de la desaminación oxidativa del glutamato, que a su vez lo adquiere por transferencia de otro aa. El segundo nitrógeno es introducido por el aspartato y puede derivar de los aa que transaminan con oxalacetato. Vías Metabólicas del Amoníaco Síntesis de Urea

CICLO DE LA UREA

Reacciones: 1. El primer grupo amino que ingresa al ciclo proviene del amoníaco libre intramitocondrial. El amoníaco producido en las mitocondrias, se utiliza junto con el bicarbonato (producto de la respiración celular), para producir carbamoil-fosfato. Reacción dependiente de ATP y catalizada por la carbamoil-fosfato-sintetasa I. Enzima alostérica y modulada (+) por el N-acetilglutamato. 2. El carbamoil-fosfato cede su grupo carbamoilo a la ornitina, para formar citrulina y liberar Pi. Reacción catalizada por laornitina transcarbamoilasa. La citrulina se libera al citoplasma.

33. El segundo grupo amino procedente del aspartato (producido en la mitocondria por transaminación y posteriormente exportado al citosol) se condensa con la citrulina para formar argininosuccinato. Reacción catalizada por la argininosuccinato sintetasa citoplasmática. Enzima que necesita ATP y produce como intermediario de la reacción citrulil-AMP. 4. El argininosuccinato se hidroliza por la arginino succinato liasa, para formar arginina libre y fumarato. El fumarato liberado en una de las reacciones es intermediario del ciclo de Krebs

5. El fumarato ingresa en el ciclo de Krebs y la arginina libre se hidroliza en el citoplasma, por la arginasa citoplasmática para formar urea y ornitina. 6. La ornitina puede ser transportada a la mitocondria para iniciar otra vuelta del ciclo de la urea. En resumen, el ciclo de la urea consta de dos reacciones mitocondriales y cuatro citoplasmáticas

ENERGÉTICA DEL CICLO El ciclo de la urea reúne dos grupos amino y un bicarbonato, para formar una molécula de urea: 1. La síntesis de la urea requiere 4 Pi de alta energía. 2 ATP para formar el carbamoil - P y un ATP para producir argininosuccinato. En la segunda reacción el ATP se hidroliza a AMP y PPi, que puede ser nuevamente hidrolizado para dar 2 Pi. 2. Se ha calculado que los animales ureotélicos pierden cerca del 15% de la energía procedente de los aminoácidos en la producción de urea.

3. Algunos animales compensan esta perdida (bovinos) por transferencia de la urea al rumen, donde los microorganismos la utilizan como fuente de amoníaco para la síntesis de aminoácidos. Este proceso incluso disminuye el consumo de agua. La conexión entre ambos ciclos, de la urea y de los ácidos tricarboxílicos, reducen el coste energético de la síntesis de urea. El ciclo de la urea conlleva la conversión de oxalacetato en fumarato y la posterior conversión del fumarato hasta oxalacetato producirá un NADH, que podrá generar 3 ATP en la respiración mitocondrial, lo que reduce el coste de la síntesis de urea.

Elbalanceenergéticodelciclodacomoresultadoel consumo de4 enlaces dealta energía. Vías Metabólicas del Amoníaco Síntesis de Urea - ENERGÉTICA DEL CICLO

Destino del esqueleto carbonado de los aa. Los aa pueden ser glucogénicos o cetogénicos, ya sea que participen en la síntesis de glucosa o de cuerpos cetónicos. - Aminoácido cetogénicos: acetil-CoA, acetoacetato. - Aminoácido glucogénicos: piruvato e intermediarios del C.A.C.. dan lugar a glucosa. Casi todos los aa no esenciales son glucogénicos, por el contrario, casi todos los aa esenciales son cetogénicos

Ciclo de Krebs

CONEXIÓN ENTRE LOS CICLOS DE LA UREA Y DE KREBS

REGULACIÓN DEL CICLO La enzima carbamoil-fosfato-sintetasa I es activada alostéricamente por el N - acetilglutamato que se sintetiza a partir del acetil-CoA y el glutamato, por la N-acetilglutamato sintetasa; enzima que, a su vez, es activada por la arginina, aminoácido que se acumula cuando la producción de urea es lenta. En individuos con deficiencias congénitas de enzimas del ciclo, distintas a la arginasa, el sustrato correspondiente se acumula, lo que provoca un aumento de la velocidad de la reacción deficiente, por lo que la velocidad del ciclo se mantiene baja. No obstante se producen acumulaciones de los sustratos precedentes, hasta el amoniaco, lo que causa finalmente una hiperamonemia. El cerebro es particularmente sensible a las [ ] elevadas de amonio.

REGULACIÓN DEL CICLO

TRANSPORTE DEL GRUPO AMINO DESDE LOS TEJIDOS HACIA EL HÍGADO

Transporte desde el músculo:CICLO ALANINA- GLUCOSA

El hábitat natural determina la ruta de excreción del nitrógeno La síntesis de urea no es la única ruta, ni siquiera la más común, para excretar el amoníaco. La base para las diferentes formas moleculares en que se excretan los grupos amino se encuentra en la anatomía y en la fisiología de los organismos en relación con su hábitat natural.anatomía fisiología En los peces óseos (animales amonotélicos), el hígado es el lugar principal del catabolismo de los aminoácidos. El amonio producido por transdesaminación se libera simplemente del hígado a la sangre para su transporte a las branquias, y es rápidamente eliminado de la sangre a medida que el agua pasa a través de las branquias. Así pues, los peces óseos no requieren un complejo sistema urinario. amonio

Los que convierten el nitrógeno amínico en purinas, las cuales se catabolizan a ácido úrico, un compuesto bastante insoluble que se excreta en las heces en forma de masa semisólida de cristales de ácido úrico. Para tener la ventaja de excretar el nitrógeno amínico en esta forma, las aves y reptiles llevan a cabo un trabajo metabólico considerable; la ruta desde los grupos amino de los aminoácidos a las purinas y al ácido úrico es un proceso complejo y que requiere energía.

Otros mecanismos generales del metabolismo de aa quesedenominan eselfosfatode Descarboxilación: utiliza enzimas descarboxilasas cuya coenzima piridoxal. Generaaminasbiogénasytambiénalosproductosde los procesos deputrefacción de proteínas. Transferencia de restos monocarbonados: el donante de metilos es la metionina, a través de la SAM (S- adenosil metionina). Otros transportadores de grupos monocarbonados son el ácido THF y la Biotina Transpeptidación: :utiliza transferasas, las cuales transfieren aminoácidos entre oligopéptidos.

Clasificación de Seres Vivos en base al producto final del metabolismo Proteico AmoniotélicosUreotélicosUricotélicos