LA ELIPSE Y LA HIPÉRBOLA

Slides:



Advertisements
Presentaciones similares
Generatriz Eje SUPERFICIE CÓNICA
Advertisements

TRAZADO GEOMETRICO DE CONICAS
INTRODUCCION A LA GEOMETRIA ANALITICA
HIPÉRBOLAS.
ELIPSES.
Apuntes 1º Bachillerato CT
Parábola.
Mediatriz de un segmento
Unidad 4 La Ecuación de la Parábola Juan Adolfo Álvarez Martínez Autor
Geometría Analítica LA ELIPSE DEFINICIÓN ELIPSES A NUESTRO ALREDEDOR
Matemáticas preuniversitarias
Capítulo 5: La Hipérbola
M. en C. René Benítez López
La hipérbola Matemáticas Preuniversitarias
I.Sistemas de coordenadas II.Gráfica de una ecuación y lugares geométricos III.La línea recta IV.Ecuación de la circunferencia V.Transformación de coordenadas.
¿Cuál es la ecuación de la recta que es perpendicular al eje “x” y que se encuentra a 5 unidades a la derecha del eje vertical? Las rectas perpendiculares.
ELIPSE E HIPERBOLA.
Parábola Es el lugar geométrico de un punto de coordenadas (x,y) que se mueve sobre un plano , de manera que su distancia a un punto fijo llamado foco.
Secciones Cónicas.
LA CIRCUNFERENCIA Y LA PARÁBOLA
PARÁBOLA La Parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo (FOCO) y de una recta fija (DIRECTRIZ)
Curso de: Matemáticas de Apoyo Geometría Analítica
Las Secciones Cónicas.
Unidad 2: Secciones cónicas
LAS CONICAS CUANDO SE INTERCEPTA UN PLANO Y UN DOBLE CONO INVERTIDO, SEGÙN EL ÀNGULO DE CORTE, SE ORIGINA UNA SECCIÒN EN EL SÒLIDO, ESTE PUEDE SER UNA.
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRIA ANALITICA.
HIPÉRBOLA.
M. en C. René Benítez López
El eje horizontal recibe el nombre de eje x o de abscisas.
GEOMETRÍA ANALÍTICA EN EL PLANO.
Ecuación de la recta.
Distancia de un punto a una recta
La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las.
La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las.
Angel Mendoza Justiniano
LA ELIPSE Lic. Hugo Tomas, RIVERA PRIETO
Lic. Hugo Tomas, RIVERA PRIETO
ELIPSE: es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante.
Profesora: Eva Saavedra G.
Cónicas. Secciones cónicas Circunferencia
INTRODUCCION A LA GEOMETRIA ANALITICA
LA PARABOLA.
GEOMETRIA ANALITICA.
Ejercicio en equipo A partir de la siguiente ecuación de una hipérbola, determina los elementos que la constituyen y traza su gráfica.
La Parábola Tema 9 F Eje Focal X Segunda Ecuación Ordinaria
M. en C. René Benítez López
Clase 190 L r l i é b p o H a a.
La Parábola Cónicas..
Secciones Cónicas: LA ELIPSE.
Tema 11 LA HIPÉRBOLA V y V’: Vértices LL’: Lado recto c : centro
  Matemáticas 3 Actividad Final 3  Alumno: Monica Martinez Navarro.
Unidad III: Cuarto Año Medio Geometría “Vectores”
Matemáticas Acceso a CFGS
KELLY FERNANDA CALA PARRA LUZ DANIELA CAMPO TORRES I-3
Ecuación de la elipse en un sistema de coordenadas reducidas (creamos un sistema con la máxima simetría posible).
El vértice en la parábola está en el punto de abscisa x = -b/2a
La Elipse Tema 10 (h,k) k h B B’ D D’ E E’ L L’ P F’ V’ V A’ l’ c l A
Geometría Analítica.
La Hipérbola.
Distancia de un punto a una recta
Facultad de Ingeniería División de Ciencias Básicas
CIRCUNFERENCIA, PARÁBOLA, ELIPSE
FUNCIONES POLINÓMICAS Y RACIONALES. INTERPOLACIÓN.
Hipérbola x y 0 x yParábola 0 x yElipse 0 Clase 197.
LA CIRCUNFERENCIA Y LA PARÁBOLA
LA ELIPSE Y LA HIPÉRBOLA
LA ELIPSE Y LA HIPÉRBOLA PROBLEMAS PROPUESTOS UNIDAD 14.
LA CIRCUNFERENCIA Y LA PARÁBOLA UNIDAD 13. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a.
Una hipérbola es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo.
Transcripción de la presentación:

LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS UNIDAD 14

Ejercicios Resueltos OBJETIVO 1 OBJETIVO 2 OBJETIVO 3

Objetivo 1. Recordarás y aplicarás la definición de la elipse como un lugar geométrico y su ecuación en la forma canónica y en la forma general.

1) Encuentra la ecuación de la elipse con focos F(0, 3) y F’(0, –3), y cada uno de sus lados rectos igual a 9. Como los focos tienen la misma abscisa, el eje focal es el eje y. El centro se encuentra en el punto medio entre ellos: C(0, 0). , La distancia c es: El lado recto es:

Sustituyendo: El valor negativo de a no se considera puesto que a es una longitud. Por tanto a = 6.

La ecuación de la elipse es:

2) Los focos de una elipse son los puntos F(3, 8) y F’(3, 2) y la longitud de su eje menor es 8. Encuentra la ecuación de la elipse, las coordenadas de sus vértices y su excentricidad. El eje focal es paralelo al eje y. El centro tiene la misma abscisa que los focos: h = 3.  La distancia entre los focos es: k = 2 + c = 2 + 3 = 5 → C(3, 5)   2b = 8 b = 4

Ecuación de la elipse: Vértices: V(h, k + a) = (3, 5 + 5) = (3, 10); V’(h, k – a) = (3, 5 – 5) = (3, 0) Excentricidad:

3) Encuentra la ecuación del lugar geométrico de los puntos cuya distancia al punto (4, 0) es igual a la mitad de su distancia a la recta x – 16 = 0 e interpreta el resultado. Distancia de un punto (x, y) al punto (4, 0): Distancia del mismo punto (x, y) a la recta x – 16 = 0:

El lugar geométrico descrito es una elipse horizontal con centro en el origen, eje mayor igual a 2(8) = 16 y eje menor igual a

4) Un arco con forma de semi-elipse tiene una altura máxima de 45m y un claro de 150m. Encuentra la longitud de dos soportes verticales situados de manera que dividan en claro en tres espacios iguales. Si el eje x es la base del arco (el eje focal de la elipse) y el origen es su punto medio, la ecuación es del tipo , con el semieje mayor, a = 75 y el semieje menor, b = 45. Para que el claro se divida en tres partes iguales, la distancia de los soportes a cada vértice y entre ellos debe ser de 50m.

La ecuación es:

Para determinar la altura de los soportes, se hace x = 25 en la ecuación y se despeja el valor de y: Puesto que y es una longitud (la altura de los postes), se toma sólo la raíz positiva.

Objetivo 2. Recordarás y aplicarás la definición de la hipérbola como un lugar geométrico y su ecuación en la forma canónica.

1) Encuentra los elementos de la hipérbola Centro C(0, 0) Eje focal El eje y Vértices V(0, 3), V’(0, –3) Focos F(0, 5), F’(0, –5) Distancia focal 10 Longitud del eje transverso 6 Longitud del eje conjugado 8 Longitud de cada lado recto Excentricidad Asíntotas

2)Encuentra la ecuación de la hipérbola horizontal que tiene su centro en (0, 0), su lado recto mide 6 unidades y su excentricidad es

3) Determina la ecuación de la hipérbola con C(0, 0), eje focal sobre el eje y, y que pasa por los puntos (4, 6) y (1, –3) Hipérbola vertical: Se sustituyen las coordenadas de los puntos por los que pasa:

Se despeja a2 en la segunda ecuación: y se sustituye en la primera:

Se resuelve para b y se sustituye para calcular a: La ecuación de la hipérbola es:

4) Los vértices de una hipérbola son los puntos (–3, 2) y (–3, –2) y la longitud de su eje conjugado es 6. Encuentra la ecuación de la hipérbola, las coordenadas de sus focos y su excentricidad. V(–3, 2) y V’(–3, –2) → la hipérbola es vertical: Centro de la hipérbola: h = –3,

Semieje transverso: Eje conjugado 2b = 6 → semieje conjugado: b = 3 Ecuación de la hipérbola: Focos: Excentricidad:

Objetivo 3. Recordarás y aplicarás la forma general de la ecuación de una elipse o de una hipérbola y las características de los coeficientes de una ecuación de segundo grado que representa a una elipse o a una hipérbola.

1) Comprueba que el lugar geométrico de la ecuación es una elipse y encuentra las coordenadas del centro, de los vértices y focos. A = 2, C = 4, 2 ≠ 4, ambos son positivos. D = 3, E = –12, F = 6; la ecuación sí representa una elipse. Por los valores de A y de C, tiene su eje focal paralelo al eje x.

Por lo tanto: a2 = 4; a = 2; b2 = 2; b =

2) Encuentra el lugar geométrico de los puntos P(x, y) tales que el producto de las pendientes de las rectas que los unen con los puntos fijos (–2, 1) y (4, 5) es igual a 3 Pendiente de las rectas que pasan por los puntos (x, y) y (–2, 1): Pendiente de las rectas que pasan por los puntos (x, y) y (4, 5): El lugar geométrico es una hipérbola.

Es una elipse. Pendiente de la recta que une a P con (3, –2): 3) Encuentra el lugar geométrico de los puntos P(x, y) tal que el producto de las pendientes de las rectas que unen el punto P con los puntos fijos (3, –2) y (–2, 1) es igual a . Pendiente de la recta que une a P con (3, –2): Pendiente de la recta que une a P con (–2, 1): Es una elipse.

4) Encuentra todos los elemento de la elipse A = 2, C = 9, D = 0, E = 0, F = -18; 2 ≠ 9, ambos son positivos y C > A. La ecuación no tiene términos en x ni en y por lo que el centro está en el origen. C(0, 0), V(3, 0), V’(-3, 0);