Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porMaricela Acosta Modificado hace 11 años
1
Tecnologías emergentes y temas focales de investigación en la industria del PVC
Cleinest Cabrera Hemer Gerente de Servicio Técnico Mexichem Resinas Colombia Bogotá, 25 de septiembre, 2012
2
Agradecimientos Dr. C.Q. Juan Diego Sierra Muñetón
Dr. Jorge Alberto Medina Perilla
3
Contenido Impulsores de la investigación e innovación en la cadena del PVC Temas focales en los ámbitos de la producción, transformación y disposición final Polimerización no acuosa Mejoras incrementales en los procesos Materias primas y aditivos bio-basados Desarrollo de alternativas en plastificantes y estabilizantes Uso de nanotecnología Aprovechamiento de residuos Referencias
4
Impulsores de la investigación y la innovación
Sustentabilidad Responsabilidad en el ciclo de vida del producto En un mundo consumiendo 1.5 veces la cantidad de recursos que el planeta puede renovar, la sustentabilidad es mandatoria Salud Ambiente Seguridad
5
Cloruro de vinilo monómero
Ciclo de Vida del PVC (de la “cuna” a la “puerta”) SAL Cloruro de vinilo monómero Cloro Polimerización Electrólisis PVC Aditivos + Craqueo Resinas de PVC Compuestos de PVC Etileno PETRÓLEO O GAS
6
Ciclo de Vida del PVC (de la “puerta” al manejo de residuos)
Producción de resinas de PVC Manejo de residuos Mezcla del PVC con aditivos, para obtener compuestos T Transformación del compuesto de PVC en productos de consumo USO
7
Impactos ambientales potenciales en el ciclo de vida del PVC
Impacts of sodium chloride (NaCl) mining or evaporation Energy consumed in the production of chlorine gas (Cl2) Mercury (Hg) released in the chlor-alkali method of Cl2 production. Oxychlorination method also uses mercury catalyst. Impacts of Cl2 gas Impacts of petroleum/gas extraction and refining for ethylene production Volatile Organic Compounds (VOCs) released to produce ethylene Energy consumed in the production of vinyl chloride Releases to the environment during monomerization Releases to the environment during polymerization Impacts of mining and extracting metals used in PVC pipe Releases of metals from fabricating additives to PVC resin Energy consumed in the compounding of PVC and formation of pipe Releases to the environment during compounding and production Health effects of ingesting water from PVC pipe Releases from the burning of PVC Releases from the leaching of disposed PVC in landfills
9
Impulsores de la investigación y la innovación
ESTRATEGIA RESPONDE A “Química Verde” Impactos ambientales Materiales bio-basados Consumo de recursos Nanomateriales Consumo de recursos Mejores prácticas Consumo de recursos/Impactos de manufactura ambientales Mejor desempeño de Consumo de recursos/Impactos productos ambientales
10
El PVC es reconocido hoy como un material sustentable, pero…
LA SUSTENTABILIDAD NO ES UNA CONDICIÓN ESTÁTICA. La respuesta constante, sobre bases científicas, objetivas y perdurables, a los cuestionamientos que ha enfrentado la industria del PVC, la ha fortalecido y ha servido de motor a la innovación en su cadena de valor.
11
Temas focales en la producción y transformación
12
VinylSUM Research Network (Reino Unido)
Red de investigación establecida desde para ayudar a afrontar los desafíos de sustentabilidad de industria del PVC Facilita y provee foco a un foro global de discusión con todos los grupos de interés para encaminar las investigaciones requeridas Identifica y propone investigaciones y los relaciona con las oportunidades de financiamiento desde la industria. Propone temas Selecciona proyectos Financia trabajos de Investigación desarrollo e Innovación
13
Polimerización no acuosa
El PVC se produce mediante un proceso sin agua, en el que se emplean hidrocarburos como diluyente. Diversos agentes de suspensión se han usado para evaluar los efectos sobre las partículas de PVC y sus características. Conlleva ahorros de energía, reducción de emisiones de CO2 y eliminación de aguas residuales. Implica la formación de partículas con morfología diferente al PVC comercial, pero con similar estabilidad térmica y mayor porosidad , que facilita la remoción del monómero residual La densidad a granel resultante es menor comparada con el PVC comercial. Dr Stella Georgiadou ,Dr Noreen Thomas, Professor Marianne Gilbert, Professor B.W.Brooks BW (2012) Dispersion of nanoparticles in poly(vinyl chloride) grains during in situ polymerization, Journal of Applied Polymer Science, 124(3), pp , ISSN: Summary: Poly(vinyl chloride) (PVC) is produced via a nonaqueous polymerization process in which hexane is used as a diluent. This nonaqueous process can lead to significant energy savings, significant reductions in carbon dioxide emissions, and the elimination of wastewater. Various suspending agents have been used to evaluate their effects on the shape and morphology of PVC grains. The nonaqueous process leads to the formation of PVC grains with higher porosity than that of typical suspension PVC. The bulk density is slightly lower than that of suspension PVC, but the thermal stability seems to be similar
14
Dr Stella Georgiadou ,Dr Noreen Thomas, Professor Marianne Gilbert, Professor B.W.Brooks BW (2012) Dispersion of nanoparticles in poly(vinyl chloride) grains during in situ polymerization, Journal of Applied Polymer Science, 124(3), pp , ISSN: Como la fase contínua es acuosa, el menor HLB produce partículas mas porosas.
15
Dr Stella Georgiadou ,Dr Noreen Thomas, Professor Marianne Gilbert, Professor B.W.Brooks BW (2012) Dispersion of nanoparticles in poly(vinyl chloride) grains during in situ polymerization, Journal of Applied Polymer Science, 124(3), pp , ISSN:
16
Dr Stella Georgiadou ,Dr Noreen Thomas, Professor Marianne Gilbert, Professor B.W.Brooks BW (2012) Dispersion of nanoparticles in poly(vinyl chloride) grains during in situ polymerization, Journal of Applied Polymer Science, 124(3), pp , ISSN:
22
Estrategia: mejor desempeño del producto, uso eficiente de recursos (agua/energía, estabilizadores)
23
Incorporación de aditivos durante la polimerización
La polimerización en suspensión del cloruro de vinilo se ha llevado a cabo en presencia de varios tipos de nano rellenos (silica, clay, polímeros de silicona o híbridos) Los nano rellenos usados influyen significativamente en la estructura y forma de los granos La presencia y distribución de los rellenos en el polímero , así como la forma del grano causada por ellos, influencia las propiedades finales del PVC y su procesabilidad. Summary MARIA OB£ÓJ-MUZAJ∗), MARIA ZIELECKA, JANUSZ KOZAKIEWICZ, AGNIESZKA ABRAMOWICZ, ANNA SZULC, WOJCIECH DOMANOWSKI Industrial Chemistry Research Institute, ul. Rydygiera 8, Warszawa, Poland - Suspension polymerization of vinyl chloride has been carried out in the presence of various types of nanofillers chosen from clays, silica (pure or functionalized), silicone polymer or hybrid core/shell ones. Nanofillers used in VC polymerization significantly influence the structure and shape of PVC grain: from typical one in case of control sample and in the presence of silica to "cake-like” in case of functionalized silica, "sea-shells” with silicone polymer use or "balls” and "dented balls” - not typical for suspension PVC - in the presence of hybrid core/shell particles. The last ones look just as emulsion PVC although were prepared in suspension polymerization process. It has been found, using SEM and TEM methods, that distribution of nanofiller in polymer was rather uniform. MMT is semiintercalated/semiexfoliated in PVC grain. Some regions showing mesoporosity were also found (especially in the presence of silica) suggesting the formation of more ordered structures in the grain. We can foresee that not only the presence and distribution of nanofillers in PVC grain but also the change of PVC grain shape caused by them can both influence the final properties of PVC and its processability
24
La distribución de rellenos es bastante homogenea en el interior de las partículas
El uso de rellenos modifica las propiedades de barrera e impulsa el uso eficiente de materiales al permitir menores espesores para el logro de las barreras requeridas.
25
Incorporación de aditivos durante la polimerización
Látex reactivos con sustancias que permiten: Cambiar la morfología del producto Influenciar propiedades mecánicas Modificar condiciones de procesamiento Reducir uso de plastificantes Controlar crosslinking La clave es la copolimerización de monómeros en estructuras determinadas (nucleo-coraza): CCD 25
26
Incorporación de aditivos durante la polimerización
Como ejemplo de esta aplicación, se han producido copolímeros PVC-Acrílicos que emplean plastificación permanente, eliminan emisiones residuales, reducen gastos energéticos de procesamiento.
27
Mejoras incrementales en procesos ya establecidos
Recuperación de aguas del proceso Reducción de consumos de energía. Uso de energías renovables (frío solar). Reducción de emisiones Mejoras en tecnologías de recuperación de residuales de monómero (despojo reactivo del PVC) Se pone en relevancia la INNOVACION, como impulsor de mejora en los procesos productivos. Las operaciones unitarias son comunes a varias etapas de la cadena y el benchmarking es válido.
28
Mejoras en seguridad de procesos existentes
Adición continua de iniciador: Elimina emisiones accidentales por falla de enfriamiento, agitación, energía Mejora estabilidad térmica del producto Reduce tiempos de ciclo Optimiza uso de refrigeración existente 28
29
Mejoras en la producción del PVC a partir de carburo de calcio y acetileno
Objetivo: Limitar los impactos ambientales mayores de esta ruta, que le restan sustentabilidad frente a la del etileno Impactos asociados al uso de mercurio ocurren en países donde se utiliza esta tecnología (China principalmente….) El Ministerio de Industria e Información Tecnológica de China (MIIT) estableció en 2010 un programa para limitar la contaminación por mercurio en la manufactura de PVC, fijando una reducción del 50% en el uso por tonelada de PVC, para 2015. Mercury Pollution poses particular challenges for China (Tan Siying reports) Mercury pollution is a global issue with China at its centre. The United Nations Environment Programme (UNEP) is pushing hard to bring the problem under control and, by 2013, aims to put in place an international, legally binding deal. This would require all countries that release a certain amount of the heavy-metal into the environment to set reduction targets. As China accounts for 25% or more of the world’s mercury emissions, it is under great pressure to make cuts. But the mission is proving a struggle. Mercury is used in a wide range of industries in China, a point flagged up by the country’s Ministry of Environmental Protection (MEP) in technical guidelines for a national survey of mercury sources. UNEP lists 50 mercury sources across 11 different categories, and 40 of these exist in China. But there is still a lack of clarity on key issues: the quantity and distribution of these sources, the amounts of mercury being used and discarded, the quantity and handling of waste mercury and the extent of pollution. The chlor-alkali industry produces hydrogen, chlorine and sodium hydroxide, the building blocks of countless everyday products, including PVC. Sixty-three percent of China’s PVC production comes from a process that uses calcium carbide as feedstock. This process absorbs 7,000 tonnes of mercury catalyst, 770 tonnes of mercuric chloride and 570 tonnes of straight mercury each year. Calcium-carbide PVC production accounts for at least half of China’s total mercury use, making it the largest mercury consumer not just in China, but the world. The 12th Five Year Plan (FYP) for the chlor-alkali industry includes production of 10 million tonnes of PVC using this method in To produce this amount, 12,000 tonnes of mercury catalyst and 1,000 tonnes of mercury are expected to be needed. However, the same plan also stresses the development and application of low-mercury catalysts. The health sector is another key consumer of mercury. Here, the most common uses are in blood-pressure monitoring devices, thermometers and oesophageal dilators. Dental fillings and some dental instruments also use the heavy-metal. This industry uses an average of 200 tonnes of mercury or more every year, according to an employee at the China Association for the Medical Devices Industry. The most common everyday use of mercury is in fluorescent lighting. One billion mercury-containing lights were discarded in Assuming these were all standard, 40-watt fluorescent bulbs, the mercury released into the environment due to improper disposal is likely to have reached 70 to 80 tonnes. Restrictions on mercury are inevitable: China can do nothing to avoid them. UNEP’s 2011 talks in Chiba, Japan, included a proposal for a global ban on mercury by Meanwhile, individual regions and countries have been taking their own steps. Europe already has an EU Mercury Strategy, designed to control mercury pollution. In March last year, a European Union ban on the export of metallic mercury, mercury ore, mercury compounds and alloys came into effect, as well a requirement for recycled mercury to be handled as waste rather than reused in industrial applications. Meanwhile, the United States listed mercury as a harmful atmospheric pollutant in Since 2005, it has introduced laws requiring special handling of mercury products and waste; restricted emissions of mercury into the air and water; and regulated the use and emission of mercury by the coal-burning power and battery-making sectors. From 2013, the United States will ban the export, sale, distribution and transfer of metallic mercury. China has also been hard at work. Before the first round of UNEP negotiations in 2010, the State Council approved a document on better prevention of heavy-metal pollution put together by the MEP and the Ministry of Industry and Information Technology (MIIT). That document set a target of bringing heavy-metal pollution – including mercury – under control by In June 2010, the MIIT published a programme for tackling mercury pollution from PVC manufacturing. Broad aims include developing new, mercury-free catalysts and working towards the elimination of mercury from calcium-carbide based PVC manufacturing. Specific targets were also put forward, including using low-mercury catalysts in half of all cases by 2012 and across the board by 2015; cutting mercury use per tonne of PVC by 50% by 2015; and recycling all low-mercury catalysts by the same year. In August 2010, at a summit in Xinjiang, the China Petroleum and Chemical Industry Federation put forward a three-stage plan: a phase of low-mercury use from 2010 to 2015, followed by a stage where mercury in liquid forms is eliminated from 2015 to 2020 and, finally, from 2021 onwards, no mercury use at all. But many industry insiders are uncomfortable with that timetable and play it down. An employee at China Chlor-Alkali Industry Association said: “These are just targets for controlling mercury pollution; you can’t call it a schedule. We’re working hard to implement low-mercury catalyst technology, but the basic research hasn’t been done – the basic data isn’t clear and there’s a lack of financially viable replacements and technology. It’s not right to talk about a timetable.”
30
Materias primas y aditivos bio-basados
Materias primas y energía obtenidas a partir de recursos renovables Etileno a partir de etanol bio-basado o de metanol sintetizado a partir de residuos Cloro obtenido con electricidad de fuentes renovables Se resalta la entrada con “bio-génesis” tanto en materiales como en procesos.
31
Materias primas y aditivos bio-basados
Argumentos a favor: Desarrollo del campo Disminuye efecto invernadero Materiales menos peligrosos Argumentos en contra: Competencia con alimentos Polución por agroquímicos de aguas 31
32
Rutas en la investigación y desarrollo de plastificantes
Tecnologías que disminuyen la migración de los ftalatos Desarrollo o mejora de plastificantes alternativos a los ftalatos Esteres convencionales: Adipatos, Citratos, Sebacatos, Azelatos, Tereftalatos, Trimellitatos, dibenzoatos Esteres cicloalifáticos: Diisononilciclohexano-1,2-dicarboxilato DINCH Plastificantes biobasados: Aceites vegetales (epoxidados y no epoxidados), ésteres de isosorbide, acetatos del glicerol y citratos (ATBC y TBC) Plastificantes poliméricos y plastificación interna Polímeros de bajo peso molecular: Poli(-caprolactona) Plastificantes iónicos
33
Opciones en plastificantes para PVC
Ftalatos de bajo peso molecular (SVHC) Ftalatos de alto peso molecular (non SVHC) Otros plastificantes Adipatos Benzoatos Citratos DINCH Bio-basados DINP DIDP DPHP DIUP DTDP DEHP BBP DBP DIBP 33
34
Isorbide: derivado del azucar de maiz
35
Esteres cicloalifáticos
37
Acetatos de Glicerol
38
Tecnologías que limitan la migración de los ftalatos
Entrecruzamiento superficial Recubrimientos superficiales: Recubrimientos tipo sol-gel por inmersión (alcóxidos de titanio y alcoxisilanosinjertados) [2] Nano-recubrimientos Modificación de las características superficiales hidrofílicas y lipofílicas Inhibidores de migración: derivados de ciclodextrinas[3], reemplazo parcial del DEHP por poli(1,2-propilenglicol adipato) PPA y uso de nano-carbonatos de calcio [4] Plastificantes reactivos: Di-(2-etilhexil) 4-mercaptoftalato (DOP-SH), DOP que establece enlaces covalentes con la cadena macromolecular del PVC [1,5]
39
Inhibidores de migración derivados de ciclodextrinas [3]
Ciclodextrinas: oligómeros polisacáridos proveniente de degradación del almidón
40
Plastificantes reactivos:
Pueden formar enlaces covalentes con el PVC [5]
41
Sistemas estabilizantes con desempeño mejorado
Estabilizantes totalmente orgánicos Mercaptidas de organoestaño con bajo olor (Akcros Chemicals): AkcrostabT5311 contiene una trampa química para mercaptanos que le confiere un bajo olor a las mercaptidas de octilestaño[13] Pentaeritritol–zinc (Penzinc) [7] Derivados 4-,6-metil sustituidos del isobornilfenol [9] Hidróxidos dobles de Mg-AL intercalados[11]
42
Estabilizantes poli-funcionales
Complejos de diorganoestaño (IV): fotostabilizadores y estabilizadores térmicos [6] Etilenglicol-bis(2-aminoetileter)-ácido N,N,N′,N′-tetra acético (EGTA): estabilizante térmico, aditivo de protección UV y antibacterial [10]. Coestabilizadores basados en D-Sorbitol para mejorar el desempeño de los estabilizantes de Ca/Zn [8] Estabilizantes que combinan fenol impedido (primarios) y tioésteres ( secundarios) [13]
43
Complejos de diorganoestaño (IV) [6]
Cambio en el peso molecular (promedio viscoso) durante la irradiación con luz UV de películas de PVC de 30 micrones y con 0.5 % en peso de aditivos
44
Uso de la nanotecnología : algunos ejemplos
Nano-carbonatos de calcio Nanotubos de carbono Nano alambres de dióxido de titanio con iones de plata como antibacterial y para dar propiedades fotovoltáicas [12 ] Nano hidróxido de magnesio usado como retardante a la llama (‘NxCat’ Mg(OH)2 Headwaters Technology Innovation Group) [13] Antioxidantes especiales para compuestos de PVC y nanoarcillas (IrgatecNC 66 de BASF) [13]: mezcla de antioxidantes (fenólicos y no fenólicos), de calcio y óxidos metálicos.
45
Tecnologías emergentes para aprovechamiento de residuos de PVC
46
Proceso Vinyloop® Desarrollado por la compañía belga, Solvay.
A mechanical recycling process for PVC, the Vinyloop ® proccess, has been developed by the Belgian firm Solvay which allows the recovery of PVC from complex waste mixtures, where separation is difficult or impossible. This new recycling process selectively dissolves the PVC in composite products. The end product is a clean PVC compound in powder form that may be used without further processing, such as melt filtration or granulation, and in some cases may even be employed in the original application (closed-loop recycling). It permits to recuperate, by means of precipitation, “regenerated” PVC from a solution of post consumer PVC waste and appropriate solvent. It is based on the selective dissolution of PVC using a biodegradable organic solvent and even allows to separate and recover PVC compound from plastic waste containing a significant proportion of other polymers. The process is based on selective dissolution of PVC, followed by separation by precipitation., filtration, and drying. The process begins with dissolution of small polymer particles into the solvent that is able to extract the PVC compound leaving any secondary material such as additives undissolved. The two phases are then separated and the PVC is precipitated. It is at the precipitation stage that new additives can be added to the regenerated PVC so that a formulation suitable for a particular application is obtained. The solvent is evaporated using steam and recovered by condensation in a closed loop, for reuse. Consequently over 99.9% of the solvent is recovered and re-used in the system. The PVC obtained has characteristics comparable to those of virgin PVC and can be used in high-end applications. Desarrollado por la compañía belga, Solvay. Permite la recuperación de mezclas complejas de residuos de PVC El producto final es compuesto de PVC limpio , en polvo , que puede ser usado sin procesamiento adicional.
47
Incineración (BSL) BSL (80% DOW, 20% BvS) ha operado desde 1999 una planta de reciclaje en Schokopau, Alemania. Ha comprobado que su tecnología es robusta e idónea para tratar grandes cantidades de residuos de PVC. Meta: Procesar los residuos mediante tratamiento térmico para producir HCl, utilizando la energía que se obtiene del mismo proceso. Primer ensayo: Se procesaron 1,027 toneladas de PVC y el HCl recuperado se usó para nueva producción de cloro y PVC. Se obtuvo información sobre los requisitos específicos para el manejo de residuos de PVC y sobre los aspectos financieros de este tipo de reciclaje BSL Olefinverbund GmbH (80% DOW, 20% BvS) in Schkopau is building a plant for the processing of chlorine-containing fluid and solid waste streams. These waste streams originate from all kinds of sources, amongst others, production waste of BSL and DOW, but also Hg-contaminated sludge from waste water treatment installations. The goal is to process the waste by thermal treatment and to produce HCl using the energy from the process itself. The HCl produced will be used by BSL Schkopau in other processes, most notably membrane electrolysis for chlorine production. The plant will be based on a rotary kiln and will have a capacity of 45 ktonnes per year (i.e. not only PVC waste) with a heat production capacity of 25 MW at ca production hours per year. Some 15,000 tonnes of this capacity is available for PVC, in relation to average caloric value and mix of different waste aggregations that the kiln can handle (see also page 26). Tests with mixtures of PVC waste and other waste have been carried out in the Stade, DOW kiln. The BSL incineration started up in mid-1999. Update of BSL Taken from Vinyl 2010 Progress report for 2004 Since 1999 Dow has operated a commercial feedstock recycling plant at its Schkopau site near Leipzig. The plant technology is proven, robust and able to manage large quantities of many different types of widely used PVC waste products. A prerequisite for practical success is the management of logistics and pre-treatment of the PVC waste. In the German waste management company ASCON GmbH undertook trials as a ‘clearing house’ between the suppliers of PVC waste and the plant, in a field test to provide important, quality statistical data, including the economics for managing the logistics. In the trial, 1,027 tonnes of PVC were successfully processed and the recovered chlorine used on site for new VCM/PVC production. The trial has given information about the specific handling requirements of PVC waste, and important intelligence about financial aspects of this type of recycling. Cost competitiveness is now the key criteria when deciding on larger quantities of PVC waste to be processed at this plant.
48
Proceso de Gasificación (Linde)
La firma alemana Linde desarrolla un proceso de gasificación de materiales reciclables adecuado para tratar PVC. Una planta piloto basada en el proceso Linde ha sido apoyada financieramente con un compromiso de 3 millones de euros por ECVM. Objetivos: Máxima conversión del cloro contenido del PVC en HCl, un gas utilizado para la oxicloración. Máxima conversión de la energía de los enlaces químicos de los residuos de PVC en otras formas de energía. Disposición de los residuos del proceso en conformidad con las regulaciones ambientales. The basic technology was developed in the 1950s for gasification of lignite and coal. The European Council of Vinyl Manufacturers (ECVM) recently pronounced a preference for this process for the treament of PVC-rich waste. They regard the process as robust and economical. A pilot plant based on the Linde process is currently planned, supported by a financial commitment of 3 Million Euro from ECVM. The task of building the pilot plant was assigned to Solvay’s Tavaux plant, located in the eastern part of France. Work on building the unit will start this year to enable the unit to be operational towards the second half of Depending on the results obtained with this pilot plant, and other considerations, a decision on a large-scale plant with a capacity of about 25,000 tpa will be taken.
49
Proceso de Gasificación por Vapor (Akzo Nobel)
En 1994, Akzo Nobel incursionó en el uso de la pirólisis rápida en un reactor con lecho fluidizado circulante Pruebas piloto: Trataron Kg/h de residuos de PVC provenientes de cables y tuberías. Pruebas a gran escala: Trataron Kg/h de residuos variados de PVC (telas vinílicas, techos, pisos y empaques), obteniendo resultados prometedores. Planes a futuro: Montar una planta para procesar 50,000 toneladas de residuos de PVC anualmente. Akzo Nobel, as a producer of chlorine and vinylchloride, started to study a process for feedstock recycling of mixed plastic waste containing PVC in Based on an investigation of all known processes, Akzo Nobel chose in 1994 to use fast pyrolysis technology in a circulating fluid bed reactor system. This technique has been developed by Battelle, Columbia, USA, for biomass gasification. Akzo Nobel has conducted small-scale pilot plant tests (20-30 kg/hr) with PVC cable and pipe scrap. With support from ECVM, experiments on a larger scale ( kg/hr) were carried out with mixed PVC waste (incl. artificial leather, roofing, flooring and packaging material). The results were promising. While the project is on hold momentarily, plans exist to build a large-scale plant (50 ktonne per year) as soon as financing has been arranged. This new plant will start up 5 years after the decision that the plant will be built. It is not certain when that will be.
50
Conclusiones Los temas de innovación se ubican a lo largo de toda la cadena cloro vinílica Responden a la necesidad de mantener la sustentabilidad de la cadena Es necesario entonces un enfoque global, que permita a los actores en diferentes puntos de la cadena conocer el potencial impacto de las mejoras realizadas en un eslabón, sobre toda la cadena En esta visión, juega un rol preponderante la llave industria-academia con el enfoque descrito en el punto anterior.
51
Referencias Georgiadou, S, Jin, L, Thomas, NL, Gilbert, M, Brooks, BW (2012) Dispersion of nanoparticles in poly(vinyl chloride) grains during in situ polymerization, Journal of Applied Polymer Science, 124(3), pp , ISSN: S. Georgiadou, N. L. Thomas, M. Gilbert, B. W. Brooks. Nonaqueous polymerization of vinyl chloride: An environmentally friendly process Journal of Applied Polymer Science (impact factor: 1.2). 02/2009; 112(4): DOI: /app.29590 MARIA OB£ÓJ-MUZAJ∗), MARIA ZIELECKA, JANUSZ KOZAKIEWICZ, AGNIESZKA ABRAMOWICZ, ANNA SZULC, WOJCIECH DOMANOWSKI. Industrial Chemistry Research Institute, ul. Rydygiera 8, Warszawa, Poland M. Biron. Alternatives to Banned Phthalates: Non-phthalates and Authorized Phthalates. SpecialChem. Dec 13, 2011 C. Massard, L. Bernard, R. Cueff, V. Raspal, E. Feschet-Chassot, Y. Sibaud, V. Sautou, K.O. Awitor. Photopolymerizablehybrid sol gel coating as a barrier against plasticizer release.Progress in Organic Coatings, 75(1–2): , 2012 B.Y. Yu, A.R. Lee, S.Y. Kwak. Gelation/fusion behavior of PVC plastisolwith a cyclodextrinderivative and an anti-migration plasticizer in flexible PVC. European Polymer Journal, 48(5): , 2012
52
Referencias X. Li, Y. Xiao, B. Wang, Y. Tang, Y. Lu and C. Wang. Effects of poly(1,2-propylene glycol adipate) and nano-CaCO3 on DOP migration and mechanical properties of flexible PVC.JOURNAL OF APPLIED POLYMER SCIENCE 124(2):1737–1743, 2012 H. Reinecke, R. Navarro, M. Pérez, and M. Gómez. Safer polyvinylchloride with zero phthalate migration. Plastic research on-line. Society of Plastics Engineers (SPE) E. Yousif, J. Salimon, N. Salih. New photostabilizersfor PVC based on some diorganotin(IV) complexes. Journal of Saudi Chemical Society, In Press, 2012 S. Xu, D. Li, X. Yu, Y. Zhang, Y. Yu, M. Zhou and S. Tang. Study on pentaerythritol–zinc as a novel thermal stabilizer for rigid poly(vinyl chloride).JOURNAL OF APPLIED POLYMER SCIENCE 126(2):569–574, 2012 P. Haro-Gutiérrez, O. Rodríguez-López, J. Arellano, E. Mendizábal, C. F. Jasso, M. Arellano and L. J. González-Ortiz. Study of thermal degradation of pvc plasticized formulations coestabilized with d-sorbitoland triphenylphosphite. SpecialChem. ANTEC 2011 V. R. Khairullina, A. Ya. Gerchikov, R. M. Akhmetkhanov, I. T. Gabitovand R. T. Minniyanova. Antioxidant properties of some 4-,6-methyl-substituted derivatives of isobornylphenol. Russian Journal of Applied Chemistry, 85(3): , 2012 S. T. Rabie and A. M. Khalil. Antimicrobialagentsas photo stabilizers for rigid poly(vinyl chloride). POLYMERS FOR ADVANCED TECHNOLOGIES, 3 NOV 2011
53
Referencias X.Zhang, T. Zhao, H. Pi and S. Guo. Preparationof intercalatedMg-Al layereddoublehydroxidesand itsapplicationin PVC thermalstability. JOURNAL OF APPLIED POLYMER SCIENCE 124(6):5180–5186, 2012 F. Liu, H. Liu, X. Li, H. Zhao, D. Zhu, Y. Zheng, C. Li. film with enhanced antibacterial activities and photocatalytic properties. AppliedSurfaceScience258(10): , 2012 D. Rosato. The Latest in PVC Additives and Compounds—High Tech Solutions! SpecialChem. Feb 20, 2012 J. Maag, C. Lassen, U. K. Brandt, J. Kjølholt, L. MolanderS. H. Mikkelsen. Identification and assessment of alternatives to selected phthalates.Danish Environmental Protection Agency Michel Biron. Bio-based Additives & Their Future.SpecialChem, Nov 2, 2011 W.D. Arendt, E.L. McBride and R. Brewer. Dibenzoateplasticizer platform development for PVC applications.ANTEC 2012 S. Wang and L. Hou. Application of Four Ionic Liquids as Plasticizers for PVC Paste Resin.Iranian Polymer Journal 20 (12), 2011, C.H. N. Laufer, B.I. Chaudhary, R.F. Eaton and B.D. Nguyen. Performance Analysis of Bio-Based vs. Nonbio-based Plasticizers for PVC. Wire & Cable Technology International/September 2011 G. Shi, D. G. Cooper, M. Maric. Poly(-caprolactone)-based ‘green’ plasticizers for poly(vinyl choride). Polymer Degradation and Stability 96 (2011)
54
Referencias Gay Puig, Francesc, Vinyloop. A new process for recycling PVC, Revista de Plasticos Modernos, (2003), 85(559), pp 29-30, (Journal written in Spanish) Yernaux, J M ; Saffert, R, The PVC loop closed. Recycling of PVC composites, Kunststoffe Plast Europe. Vol. 91, no. 8, pp Aug. 2001 Vinyloop®, Buhl, Rolf, Progress in PVC feedstock recycling (Warsaw, Poland) (2003), 48(4), pp , (General Review written in English)
55
Gracias por su atención
IQ. Cleinest Cabrera Hemer Dr. Jorge Alberto Medina Perilla
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.