La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

UNIDAD 4 LA DERIVADA El concepto de límite de una función, El cambio: motor fundamental del universo, Derivación de funciones Dr. Daniel Tapia Sánchez.

Presentaciones similares


Presentación del tema: "UNIDAD 4 LA DERIVADA El concepto de límite de una función, El cambio: motor fundamental del universo, Derivación de funciones Dr. Daniel Tapia Sánchez."— Transcripción de la presentación:

1 UNIDAD 4 LA DERIVADA El concepto de límite de una función, El cambio: motor fundamental del universo, Derivación de funciones Dr. Daniel Tapia Sánchez

2 En esta actividad aprenderás a: Describir con sus palabras el concepto de derivada. Interpretar geométricamente la derivada. Definir la derivada de una función en un punto. Interpretar la derivada como una razón de cambio.

3 4.1 El concepto de límite de una función Estos son los temas que estudiaremos: 4.2 El cambio, motor fundamental del universo El cambio en la Mercadotecnia Cómo cambian las funciones? Definición de la Derivada 4.3 Derivación de funciones Reglas de derivación El cambio en el universo

4 El concepto de límite describe el comportamiento de una función cuando su argumento se acerca a algún punto o se vuelve extremadamente grande 4.1 El concepto de límite

5 significa que se puede acercar tanto a como se quiera haciendo suficientemente cercano a. Sea una función y un número real. La expresión

6 4.2 El cambio, motor fundamental del Universo. La velocidad: Como cambia la posición con el tiempo. La potencia: Cómo cambia la energía con el tiempo La fuerza: Cómo cambia la energía potencial con la posición La inflación: Como cambian los precios con el tiempo El cáncer: Cómo crecen los tumores con el tiempo Ecología: Cómo evoluciona un ecosistema con el tiempo Las revoluciones: ¿Son sistemas dinámicos ultracomplejos?

7 4.1 El cambio, motor fundamental del Universo. Las funciones describen la evolución de las variables dinámicas de los sistemas

8 4.2.3¿Cómo cambian las funciones? xf(x)

9 ¿Cómo cambian la función?.

10 ¿Cómo cambia la función?. Cuando va de 0 a 1 crece en 4 Cuando va de -1 a 0 crece en -2 (decrece) Cuando va de 1 a 2 crece en 10 Cuando va de -2 a -1 crece en -8 (decrece)

11 ¿Cómo cambia la función entre x y x?

12

13 ¿Cómo cambia esta otra función entre x y x?

14 La recta azul es la secante a la curva

15 4.2 Definición de la derivada La derivada de una función es la razón de cambio de dicha función cuando cambia x, es decir, cuánto cambian los valores de y, cuando x cambia una cierta cantidad.

16 La Pendiente de una Curva ¿Una curva tiene pendiente? ¿y cuál es esta recta? Entenderemos por pendiente de una curva a la pendiente de la recta que más se asemeja (ajusta) a la curva. La derivada de una función puede analizarse también a partir de la pendiente de una curva.

17 El problema de la recta tangente x y y = f(x) a P Q x Pendiente de la recta secante:

18 a x y y = f(x) P Q x El problema de la recta tangente Pendiente de la recta secante:

19 a x y y = f(x) P Q x El problema de la recta tangente Pendiente de la recta secante:

20 a x y y = f(x) P Q x El problema de la recta tangente Pendiente de la recta secante:

21 a x y y = f(x) P Q x Pendiente de la recta secante: El problema de la recta tangente

22 a x y y = f(x) P El problema de la recta tangente Pendiente de la recta tangente:

23 Cómo determinamos la derivada de una función? Vamos a mostrar algunos ejemplos ya resueltos de derivadas, con la intención de que ustedes vayan deduciendo un procedimiento (regla) para resolverlas.

24 Sea la función: La derivada de esta función es: Reglas para encontrar la derivada de una función.

25 Sea la función: La derivada de esta función es: Derivadas especiales

26 Sea la función: Derivadas especiales La derivada de esta función es:

27 Sea la función: La derivada de esta función es: Ejemplos de derivadas

28 Sea la función: La derivada de esta función es: Ejemplos de derivadas

29 Sea la función: La derivada de esta función es: Ejemplos de derivadas

30 Derivada de una suma y diferencia de funciones Sea la función: La derivada de la suma o diferencia es:

31 Ejemplos Sean las funciones:

32 Ejercicios propuestos Deriva las siguientes funciones:

33 Derivada de un producto de funciones Si la función que voy a derivar f(x) es el producto de las funciones g(x) y h(x), existe una regla para encontrar la derivada de esta función.

34 Ejemplo Consideremos el siguiente producto de funciones Claramente podemos identificar g(x)=8x 2 -5x y h(x)=13x 2 +4 y recordando la regla para derivar productos de funciones tenemos que

35 Ejercicios propuestos Resuelve el producto de funciones:

36 Deriva este otro producto de funciones: Ejercicios propuestos

37 Derivada de un producto de varios factores Un caso especial en este tipo de derivadas, se presenta cuando debemos derivar más de dos factores o términos. Para este caso debemos seguir la siguiente regla. Consideremos tres factores, es decir su derivada será:

38 Ejemplo: Derivemos la siguiente expresión:

39 Derivada de un cociente: Si la función que voy a derivar f(x) es un cociente de funciones g(x) y h(x), existe una regla para encontrar la derivada de esta función.

40 Ejemplo: Consideremos el siguiente cociente de funciones Claramente podemos identificar g(x)= 4 x -5 y h(x)= 3 x +2 y recordando la regla para derivar productos de funciones tenemos que

41 Ejemplo: Es importante recordar que siempre tenemos que llegar a la mínima expresión, como fue en este caso.

42 Ejemplo: Sea

43 Ejemplo: Sea

44 Derivada de una función elevada a una potencia: Si la función que voy a derivar f(x) es una h(x), que está elevada a una potencia n, existe una regla para encontrar la derivada de esta función.

45 Ejemplo: Consideremos el siguiente cociente de funciones Claramente podemos identificar h(x)=5x-4 y recordando la regla de la cadena tenemos que

46 Ejemplo Sea La función puede escribirse también de la siguiente forma: y

47 Ejemplo Sea

48 Ejemplo

49 Derivadas de las funciones trigonométricas x en radianes


Descargar ppt "UNIDAD 4 LA DERIVADA El concepto de límite de una función, El cambio: motor fundamental del universo, Derivación de funciones Dr. Daniel Tapia Sánchez."

Presentaciones similares


Anuncios Google