La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Tercer parcial Operadores Fundamentos de programación.

Presentaciones similares


Presentación del tema: "Tercer parcial Operadores Fundamentos de programación."— Transcripción de la presentación:

1 Tercer parcial Operadores Fundamentos de programación

2 Tercer parcial TIPOS DE DATOS Simples: Ocupan una sola casilla en memoria, la cual hace referencia a un solo valor a la vez. Algunos de estos tipos de datos se pueden definir como: Enteros, Reales, Caracteres, Boléanos. Estructurados: Se caracterizan por el hecho de que con un nombre (identificador de variable) se hace referencia a un grupo de casillas de memoria. CLASIFICACIÓN DE LOS TIPOS DE DATOSIdentificador

3 Tercer parcial DATOS NUMÉRICOS Dentro de los tipos de datos numéricos, tenemos los enteros y los reales. Los enteros son números que pueden estar precedidos del signo + o -, ya que NO tienen una parte decimal. Ejemplo Los reales son números que pueden estar precedidos del signo + o – y que tienen una parte decimal. Ejemplo

4 Tercer parcial DATOS ALFANUMÉRICOS Carácter (simple) y cadena de caracteres: Son datos cuyo contenido pueden ser letras del abecedario (a,b,c…z), dígitos ( ) o símbolos especiales (!+·=)(/&%$·…..etc.), y que van encerrados entre comillas dobles o sencillas, dependiendo el leguaje de programación. Ejemplo de tipo dato carácter contiene un solo carácter a B $ 9 - # G Ejemplo de tipo dato cadenas de carácter contiene un conjunto de caracteres. abcde Blanco $dsd* 9dasd55 camilo López

5 Tercer parcial Datos lógicos Dentro del este tipo de datos encontramos los booleanos. Son datos que solo pueden tomar dos valores: verdadero (true) o falso (false). ¿Juan es mas alto que Pedro? Juan Pedro = Verdadero (TRUE)

6 Tercer parcial OPERADORES Son elementos que relacionan de forma diferente, los valores de una o mas variables o o una constantes. Es decir, los operadores nos permiten manipular valores. Operadores aritméticos: Los operadores aritméticos permiten la realización de operaciones matemáticas con los variables y las constantes. Los operadores aritméticos pueden ser utilizados con tipos de datos enteros o reales. Si ambos son enteros, el resultado es entero; si alguno de ellos es real, el resultado es real. Los operadores aritméticos son: [+] Suma. [-] Resta. [*] Multiplicación. [/] División con decimales. [\] División entera. [Mod o Modulo] División modular o Residuo de la división. [** o ^] Exponenciación.

7 Tercer parcial Operadores lógicos Operadores que permiten comparar dos valores o variables. Se dividen en operadores lógicos relacionales y operadores lógicos boléanos Operadores lógicos relacionales: Se utilizan para establecer una relación entre dos valores. Compara estos valores entre si y esta comparación produce un resultado de Verdadero o Falso. Los operadores relaciónales comparan valores del mismo tipo, tienen el mismo nivel de prioridad en su evaluación y tienen menor prioridad que los aritméticos. Los operadores relaciónales son

8 Tercer parcial [>] Mayor que. [<] Menor que. [>=] Mayor o igual que. [<=] Menor o igual que. [=] Igual. [ ] Diferente

9 Tercer parcial OPERADORES LÓGICOS BOLÉANOS Estos operadores se utilizan para establecer relaciones entre valores lógicos. Estos valores pueden ser resultado de una expresión relacional. Los operadores lógicos son:

10 Tercer parcial And ] Disyunción Y. [Or ] Conjunción O. [Not] Negación

11 Tercer parcial Jerarquía de los operadores Para resolver cualquier operación o ejercicio se debe desarrollar teniendo en cuenta el siguiente orden: Todas las expresiones entre paréntesis se evalúan primero. Las expresiones con paréntesis anidados se evalúan desde el centro hacia fuera, el paréntesis mas interno se evalúa primero. Dentro de una misma expresión los operadores se evalúan en el siguiente orden. 1.Exponenciación 2.Multiplicación, División (Con decimales) 3.División Entera y División Modular. 4.Suma y resta

12 Tercer parcial Cuando se encuentran operadores del mismo nivel, estos se desarrollan de izquierda a derecha. Cuando se encuentran varios paréntesis, se empiezan a desarrollar por el más interno. Un paréntesis, sólo desaparece, cuando queda un solo término en medio de ellos

13 Tercer parcial Jerarquía de los operadores Para desarrollar cualquier operación algorítmica es necesario utilizar la jerarquía de los operadores, ya que ella indica el orden e importancia de cada uno de los operadores aritméticos

14 Tercer parcial Tomaremos como ejemplo la expresión [2 * 5 + 3]. Algunos tendrían la duda de cual operación resolver en primera instancia ¿La multiplicación o la suma?; otros sumarían y luego multiplicaría diciendo que la respuesta es 16

15 Tercer parcial Para no cometer estos errores o no tener duda al momento de resolver una operación matemática, tenga en cuenta la jerarquía de los operadores, donde notará que primero se debe realizar la multiplicación y luego la suma, por lo tanto la respuesta correcta será 13, discriminado de la siguiente manera:

16 Tercer parcial 2 * Resultado Correcto

17 Tercer parcial 1.40 / ^ 2 * > 1° es la exponenciación 2.40 / * > Primero se resuelve la división (de izquierda a derecha) * > Luego división (mismo nivel jerárquico de multiplicación) > Por último se realiza la suma 5.200

18 Tercer parcial Primero se resuelve la Exponenciación, ya que al no haber paréntesis, es el operador de mayor jerarquía. En la segunda línea se da solución a la división, que a pesar de estar al mismo nivel que la multiplicación, la condición es que se deben desarrollar de izquierda a derecha. Así, luego de la división se desarrolla la multiplicación, y por última la suma que es el operador ubicado en el último nivel. Observe que en cada línea se señala la operación a solucionar, y en la línea siguiente va la solución a ese cálculo. Lo demás queda igual, sin modificarse.

19 Tercer parcial Primero se resuelve la Exponenciación, ya que al no haber paréntesis, es el operador de mayor jerarquía. En la segunda línea se da solución a la división, que a pesar de estar al mismo nivel que la multiplicación, la condición es que se deben desarrollar de izquierda a derecha. Así, luego de la división se desarrolla la multiplicación, y por última la suma que es el operador ubicado en el último nivel.

20 Tercer parcial Observe que en cada línea se señala la operación a solucionar, y en la línea siguiente va la solución a ese cálculo. Lo demás queda igual, sin modificarse. Luego de adquirir habilidad y práctica con estas operaciones, se podrán desarrollar varias operaciones y cálculos de forma simultanea. En algoritmos se manejan tres tipos de división, las cuales a pesar de su similitud son totalmente diferentes. Tomaremos el caso de dividir 51 por 2 y sumarle 3 utilizando estos tres tipos de división

21 Tercer parcial 51 / > La división ( / ) indica que se manejan decimales. 51 / 2= > Luego se realiza la suma de los dos valores \ > La división ( \ ) indica que sólo se maneja la parte entera. 51 \ 2= 25

22 Tercer parcial > Luego se realiza la suma de los dos valores mod > (mod) indica que se usa el residuo de la división 51 mod 2 = > Luego se realiza la suma de los dos valores 4

23 Tercer parcial Observe lo distinto de los resultados. La división modular toma sólo el residuo de la división: El 2 en el 51 está 25 veces. 25 x 2 = 50. Por lo tanto de 50 a 51 hay 1 (este es el residuo de la división). Para entender mejor observemos los siguientes Ejercicios

24 Tercer parcial En el primer tipo de división (Ejercicio 11) se tienen en cuenta los decimales. En el segundo sólo la parte entera (Ejercicio 12 - como es divisible da lo mismo que la división anterior), y en el último, el residuo de la división (en este caso es 0, porque es 50 es divisible por 2).

25 Tercer parcial EJERCICIOS * 12 / 2 ^ 2 + ((5 ^ 3) / ) * 12 / 2 ^ 2 + (125 / ) * 12 / 2 ^ 2 + ( ) * 12 / 2 ^ * 12 / /

26 Tercer parcial 20 / 2 / 2 / 5 + (41 \ 2 \ 5 + 3) 20 / 2 / 2 / 5 + (20 \ 5 + 3) 20 / 2 / 2 / 5 + (4 + 3) 20 / 2 / 2 / / 2 / /

27 Tercer parcial (2 ^ 2 * 4 * 3) \ 2 + (2 ^ 5 mod 2 ^ 2 * 3) (4 * 4 * 3) \ 2 + (2 ^ 5 mod 2 ^ 2 * 3) (16 * 3) \ 2 + (2 ^ 5 mod 2 ^ 2 * 3) 48 \ 2 + (2 ^ 5 mod 2 ^ 2 * 3) 48 \ 2 + (32 mod 2 ^ 2 * 3) 48 \ 2 + (32 mod 4 * 3) 48 \ 2 + (32 mod 12) 48 \

28 Tercer parcial 3 ^ ^ 3 – 4 ^ / 5 \ 2) mod 3 ( ^ 3 – 4 ^ / 5 \ 2) mod 3 ( – 4 ^ / 5 \ 2) mod 3 ( – / 5 \ 2) mod 3 ( – \ 2) mod 3 ( – ) mod 3 (35 – ) mod 3 (19 + 0) mod 3 19 mod 3 1

29 Tercer parcial (10 ^ * 100 / 5) (605 mod 2) * 1150 ( * 100 / 5) (605 mod 2) * 1150 ( / 5) (605 mod 2) * 1150 ( ) (605 mod 2) * (605 mod 2) * – 1 * –

30 Tercer parcial 360 / 2 / 10 / 3 - (45 mod 8) * / 2 / 10 / 3 – 5 * / 10 / 3 – 5 * / 3 – 5 * – 5 * –

31 Tercer parcial 36 – mod (48 mod ) – mod (8 - 6) – mod – 32 – –

32 Tercer parcial 3 * (2 ^ 4 + (5 * 3 ^ 3 + 2) \ 7) mod 2 3 * (2 ^ 4 + (5 * ) \ 7) mod 2 3 * (2 ^ 4 + ( ) \ 7) mod 2 3 * (2 ^ \ 7) mod 2 3 * ( \ 7) mod 2 3 * ( ) mod 2 3 * 35 mod mod 2 1

33 Tercer parcial

34 Metodología para la solución de problemas con la computadora 1.ESPECIFICACIÓN DEL PROBLEMA 2.ANÁLISIS DEL PROBLEMA 3.CODIFICACIÓN 4.DIGITALIZACIÓN 5.COMPILACIÓN 6.VERIFICACIÓN 7.DOCUMENTACIÓN

35 Tercer parcial ESQUEMA DE UN COMPILADOR Programa fuente Ejecución del programa Resultados CompiladorPrograma objeto DATOS

36 Tercer parcial ESQUEMA DE UN INTÉRPRETE Programa fuente Resultados Compilador DATOS

37 Tercer parcial SOLUCIÓN DE PROBLEMAS APLICANDO MODELOS MATEMÁTICOS FÓRMULAS DATOS RESULTADOS

38 Tercer parcial SOLUCIÓN DE PROBLEMAS APLICANDO MODELOS MATEMÁTICOS ANALISISALGORITMO ¿Qué datos necesito?Capturar el numero 1 Capturar el numero 2 ¿Qué formulas voy a utilizar? Algoritmo de la suma: Suma = numero 1 + numero 2 ¿Qué resultados voy a obtener? Imprimir el resultado de la suma.

39 Tercer parcial Características y formas de los algoritmos Tres características básicas: 1.Preciso: debe ser concreto, no tener pasos de mas y la solución tiene que ser clara y concreta. 2.Congruente: al probarse varias veces los resultados deben ser los mismos. 3.Finito: al seguir los pasos deben llegar a la solución, es decir, debe tener termino.

40 Tercer parcial Características y formas de los algoritmos Los algoritmos pueden ser creados de dos formas distintas: 1. Pseudo-código: es un conjunto pequeño y claro de instrucciones; en secuencia, que permite llevar a cabo una tarea. 2. Diagrama de flujo: es la representación de la secuencia, a través de símbolos, de la tarea que se va a realizar.

41 Tercer parcial Características y formas de los algoritmos En pseudo-código Inicio Escribe: (calcula el area de cualquier rectangulo) Escribe: (de largo mide) Captura: (largo) Escribe: (de ancho mide) Captura: (ancho) Formula: área = largo x ancho Escribe: ( el area mide:, area) fin

42 Tercer parcial Características y formas de los algoritmos En diagrama de flujo inicio ancholargo Área = largo x ancho área fin Entrada (in) Salida (out)

43 Tercer parcial Estructura para crear un modelo lineal. Para elaborar programas que emplean distintos tipos de valores, debemos conocer la estructura necesaria: TIPOS DE VARIABLES: los datos deben ser almacenados en casillas o celdas de memoria. Reciben el nombre de variables y en ellas se almacenan los valores numéricos o alfanuméricos.

44 Tercer parcial VARIABLES REALES: únicamente almacenan números reales, enteros o decimales, positivos o negativos. VARIABLES ALFANUMÉRICAS: almacenan cualquier valor que no se utilice para realizar cálculos aritméticos. Una letra, cadena de letras, direcciones, nombres de personas, palabras…

45 Tercer parcial OPERADORES ARITMÉTICOS OperadorOperaciónEjemploResultado ^Potencia4 ^ 364 *Multiplicación4 * 312 /División4 / 22 +Suma Resta4 – 22 =AsignaciónA = 3

46 Tercer parcial JERARQUÍA DE OPERACIONES Jerarquí a ResultadoComentario 1a.( 4 / 2) paréntesis Se ejecutan antes que ninguna. 2a4^3 = 64 Después del () 3a.4 * 8 = 32 ó 4 / 2 = 2 Tienen la misma jerarquía 4a.7 – 2 = 5 ó = 5 Tienen la misma jerarquía 5a.A = A + 1 Al final de la operación se asigna el valor


Descargar ppt "Tercer parcial Operadores Fundamentos de programación."

Presentaciones similares


Anuncios Google