La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Programación Paralela Análisis de Algoritmos Paralelos 1 PROGRAMACIÓN PARALELA Tema 5: Análisis de algoritmos paralelos REFERENCIAS La mayoría de los libros.

Presentaciones similares


Presentación del tema: "Programación Paralela Análisis de Algoritmos Paralelos 1 PROGRAMACIÓN PARALELA Tema 5: Análisis de algoritmos paralelos REFERENCIAS La mayoría de los libros."— Transcripción de la presentación:

1 Programación Paralela Análisis de Algoritmos Paralelos 1 PROGRAMACIÓN PARALELA Tema 5: Análisis de algoritmos paralelos REFERENCIAS La mayoría de los libros de la bibliografía, en particular: Foster, cap 3 Kumar, Grama, Gupta, Karypis, cap 4 Wilkinson, Allen, cap 2.3 y 2.4

2 Programación Paralela Análisis de Algoritmos Paralelos 2 Análisis de algoritmos paralelos Los procesadores paralelos se usan para acelerar la resolución de problemas de alto coste computacional. La finalidad principal consiste en reducir el tiempo de ejecución: si el tiempo secuencial t(n) se intentará que usando p procesadores el tiempo se reduzca a t(n)/p. Ver algunas medidas que nos dan idea de la "bondad" de un algoritmo paralelo.

3 Programación Paralela Análisis de Algoritmos Paralelos 3 Tiempo secuencial El tiempo de ejecución de un programa secuencial depende de: tamaño de la entrada, compilador, máquina, programador,..., si nos olvidamos de valores constantes dependientes del sistema (por ejemplo el coste de una operación aritmética en la máquina donde ejecutamos el programa) podemos considerar el tiempo función del tamaño del problema: t(n). El tiempo desde que empieza la ejecución del programa hasta que acaba.

4 Programación Paralela Análisis de Algoritmos Paralelos 4 Tiempo de ejecución paralelo En un programa paralelo la estimación del tiempo es más compleja. Además de los parámetros anteriores, depende de: número de procesadores t(n,p), de la manera en que están conectados entre sí (topología) y con los módulos de memoria (memoria compartida o distribuida) Es el tiempo transcurrido desde que empieza la ejecución del primero de los procesadores hasta que acaba el último de ellos.

5 Programación Paralela Análisis de Algoritmos Paralelos 5 Tiempo de ejecución paralelo DIFICULTADES: No siempre es fácil determinar el orden en que los procesadores empiezan y acaban. A lo largo de la ejecución de un programa paralelo hay puntos de sincronización de los que no siempre podemos determinar su duración al no saber en el orden en que van a llegar los distintos procesos a estos puntos.

6 Programación Paralela Análisis de Algoritmos Paralelos 6 Tiempo de ejecución paralelo Esquema de programa paralelo: Computación 1 Comunicación 1 (sincronización en memoria compartida) Computación 2 Comunicación 2... t(n,p)=ta(n,p)+tc(n,p) ta(n,p) : suma de los tiempos de las distintas partes de computación tc(n,p) : suma de los tiempos de las distintas partes de comunicación

7 Programación Paralela Análisis de Algoritmos Paralelos 7 Tiempo de ejecución paralelo, ejemplo Programa paralelo en dos procesadores: Computación Comunicación Computación Comunicación t(n,p)=ta(n,p)+tc(n,p)=7 treal(n,p)=ta(n,p)+tc(n,p)+toverhead(n,p)=8

8 Programación Paralela Análisis de Algoritmos Paralelos 8 Tiempo de ejecución paralelo, ejemplo t(n,p)=ta(n,p)+tc(n,p)=15 treal(n,p)=ta(n,p)+tc(n,p)-tsolapamiento(n,p)=14

9 Programación Paralela Análisis de Algoritmos Paralelos 9 Tiempo de ejecución Overhead debido a: sincronización, puesta en marcha de los procesos, sobrecarga de la red de comunicación,... Se suele considerar: t(n,p)=ta(n,p)+tc(n,p)+to(n,p)-ts(n,p) Minimizar el tiempo de overhead. Maximizar el solapamiento.

10 Programación Paralela Análisis de Algoritmos Paralelos 10 Suma de n números Secuencial: t(n)=n-1 Paralelo con n/2 procesadores, como mínimo t(n)/(n/2)=2 En cada Pi, i=0,1,...,n/2-1 inicio=2*i desplazamiento=1 activo=true para k=1,2,...,log n si activo a[inicio]=a[inicio+desplazamiento] desplazamiento=desplazamiento*2 finsi si i mod desplazamiento <>0 activo=false finsi finpara

11 Programación Paralela Análisis de Algoritmos Paralelos 11 Suma de n números Pasos: log n Trabajo adicional (overhead): Comprobación de si el procesador trabaja, Uso de las variables, Actualización de las variables. Con n=64 si cada paso secuencial y paralelo igual coste: t(n) 8*t(n,p) si cada paso secuencial coste 2 y paralelo coste 5: t(n) 3.5*t(n,p) Y en memoria distribuida problema de acceso a los datos.

12 Programación Paralela Análisis de Algoritmos Paralelos 12 Suma de n números. En hipercubo Cada procesador tiene dos valores, a y b En cada Pi, i=0,1,...,n/2-1 desplazamiento=1 activo=true para k=1,2,...,log n-1 si activo a=a+b desplazamiento=desplazamiento*2 si i mod desplazamiento <>0 activo=false enviar a a i-desplazamiento/2 en otro caso recibir en b de i+desplazamiento/2 finsi finpara si i=0 a=a+b finsi

13 Programación Paralela Análisis de Algoritmos Paralelos 13 Suma de n números. En hipercubo P0 6 5 P P1 5 3 P P0 0 1 P3 6 7 P1 2 3 P2 4 5 P0 1 P P1 5 3 P2 9 5 P0 1 5 P P1 5 3 P P P P1 5 3 P P P P1 5 3 P

14 Programación Paralela Análisis de Algoritmos Paralelos 14 Suma de n números. En hipercubo Pasos: log n Trabajo adicional (overhead): Comprobación de si el procesador trabaja, Uso de las variables, Actualización de las variables, Comprobación de enviar o recibir, Envío o recepción. Con n=64 si cada paso secuencial coste 2 y paralelo coste 7: t(n) 2,5*t(n,p) si ts=2*tw y tw=2*tc: t(n) 1,5*t(n,p) si ts=10*tw y tw=10*tc: t(n) 0,16*t(n,p)

15 Programación Paralela Análisis de Algoritmos Paralelos 15 Suma de n números. En malla

16 Programación Paralela Análisis de Algoritmos Paralelos 16 Suma de n números. En malla Si p=2 n 2*( n/2-1 )= 2 n/2+1 comunicaciones Con n=64 si ts=2*tw y tw=2*tc: t(n) 1,4*t(n,p) si ts=10*tw y tw=10*tc: t(n) 0,1*t(n,p)

17 Programación Paralela Análisis de Algoritmos Paralelos 17 Suma de n números. En anillo Si p=2 n 2*( n-1 )= 2 n+1 = p-1 comunicaciones Con n=64 si ts=2*tw y tw=2*tc: t(n) 0,74*t(n,p) si ts=10*tw y tw=10*tc: t(n) 0,04*t(n,p)

18 Programación Paralela Análisis de Algoritmos Paralelos 18 Coste de comunicaciones Son de los siguientes órdenes: Comunicación vecinosComunicación todos hipercubo log p/2 log p/2 malla 2*p log p/2 anillo p-1 log p/2 red p-1 Además, la red puede estar congestionada al haber muchos mensajes por haber muchos procesadores. Problemas: Problema de poco coste y no apropiado para resolver en paralelo, granularidad pequeña, sólo como ayuda para diseñar un programa pero no como programa final.

19 Programación Paralela Análisis de Algoritmos Paralelos 19 Causas de reducción de las prestaciones Contención de memoria: En memoria compartida el acceso a datos comunes o que están en el mismo bloque de memoria producirá contención. Si los datos son de lectura puede no haber ese problema. En el ejemplo los procesadores escriben en zonas distintas. No hay problema de coherencia, pero puede haber de contención si hay datos en los mismos bloques de memoria. Código secuencial: Puede haber parte imposible de paralelizar, como puede ser la I/O. En el ejemplo la inicialización de variables. Además, si los datos están inicialmente en un procesador y hay que difundirlos el coste es lineal. Tiempo de creación de procesos: El programa empieza a ejecutarse con un proceso que pone en marcha los demás. El coste de creación de los procesos puede ser importante si la granularidad de estos es pequeña.

20 Programación Paralela Análisis de Algoritmos Paralelos 20 Causas de reducción de las prestaciones Computación extra: Si se obtiene programa paralelo a partir de secuencial, son necesarias computaciones adicionales por: uso de variables de control, comprobación de identificadores de proceso, cálculo adicionales o comunicaciones para obtener datos calculados por otro procesador,... Comunicaciones: En memoria distribuida, es tiempo adicional al aritmético. Pueden implicar trabajo de procesadores intermedios. Tiempo de sincronización: Cuando un proceso tiene que esperar a que estén disponibles datos procesados por otro. Conlleva comunicaciones en memoria distribuida.

21 Programación Paralela Análisis de Algoritmos Paralelos 21 Causas de reducción de las prestaciones Desbalanceo de la carga: El volumen total de la computación no se distribuye por igual entre todos los procesadores: en el ejemplo, en el primer paso trabajan todos pero en los pasos siguientes va disminuyendo el número de procesadores que trabajan, también es posible que partamos de una entrada que no se puede balancear, por ejemplo si tenemos 12 datos para 8 procesadores, o que el volumen de datos varíe a lo largo de la ejecución, con lo que se necesitaría balanceo dinámico.

22 Programación Paralela Análisis de Algoritmos Paralelos 22 Granularidad de la computación Uso de muchos procesadores no es realista: No dispondremos de tantos procesadores. Aunque dispongamos de ellos hay caída de las prestaciones. La granularidad del sistema (sistema físico+algoritmo) indica la cantidad de computación y datos asignados a cada procesador: Grano fino: si a cada procesador se asignan pocos datos o se realiza poca computación entre comunicaciones. Grano grueso: si a cada procesador se asignan muchos datos o se realiza mucha computación entre comunicaciones. Interesa programación paralela cuando el paralelismo es de grano grueso. En sistólicos el paralelismo es de grano fino.

23 Programación Paralela Análisis de Algoritmos Paralelos 23 Suma de n números con p procesadores En cada Pi, i=0,1,...,p-1 suma=0 para j=i*n/p,...,(i+1)*n/p-1 suma=suma+a[j] finpara sincronización a[i]=suma inicio=i*2 desplazamiento=1 si i mod 2=0 activo=true en otro caso activo=false finsi para k=1,2,...,log p-1 si activo a[inicio]=a[inicio+desplazamiento] desplazamiento=desplazamiento*2 finsi si i mod desplazamiento <>0 activo=false finsi finpara

24 Programación Paralela Análisis de Algoritmos Paralelos 24 Suma, en memoria distribuida En cada Pi, i=0,1,...,p-1 suma=0 para j=0,...,n/p-1suma=suma+a[j]finpara si i mod 2=0 recibir en b de i+1activo=true en otro caso enviar suma a i-1activo=false finsi desplazamiento=2 para k=1,2,...,log p-2 si activo suma=suma+b desplazamiento=desplazamiento*2 si i mod desplazamiento <>0 activo=false enviar suma a i-desplazamiento/2 en otro caso recibir en b de i+desplazamiento/2 finsi finpara si i=0suma=suma+bfinsi

25 Programación Paralela Análisis de Algoritmos Paralelos 25 Suma de n números con p procesadores En memoria compartida todas las variables son locales salvo el array a. En memoria distribuida la sincronización por el paso de mensajes. El tamaño del problema (n) es múltiplo del número de procesadores (p). Se puede generalizar fácilmente. t(n,p)=2*n/p*tc+6*(log p-1)*(ts+tw) si p<<

26 Programación Paralela Análisis de Algoritmos Paralelos 26 Speed-up Mide la ganancia de velocidad que se obtiene con un programa paralelo. Es el cociente entre el tiempo secuencial y el paralelo: S(n,p)=t(n)/t(n,p) ¿Qué t(n)? El del mejor algoritmo secuencial que resuelve el problema, pero ¿cuál es el mejor algoritmo secuencial? depende del tamaño de la entrada, distribución de los datos, máquina,..., y puede no conocerse. El del mejor algoritmo secuencial conocido. Pero depende de los mismos parámetros anteriores. Tiempo de ejecución en un procesador del algoritmo paralelo. Pero puede que el mejor esquema para paralelizar no sea bueno en secuencial. El tiempo de ejecución de un algoritmo secuencial razonablemente bueno. Habrá que indicar cuál se usa.

27 Programación Paralela Análisis de Algoritmos Paralelos 27 Speed-up El speed-up será menor que el número de procesadores usado. Si no podría hacerse un algoritmo secuencial mejor que el que se usa, simulando el algoritmo paralelo. En algunos casos puede haber speed-up superlineal por mejor gestión de la memoria al usar más procesadores. Para un tamaño de problema fijo se aleja del valor óptimo al aumentar el número de procesadores. Para un número de procesadores fijo aumenta al aumentar el tamaño del problema p=10p=10 p=20p=20 p=30 p=40p=40 p=50p=50

28 Programación Paralela Análisis de Algoritmos Paralelos 28 Speed-up, suma con n/2 procesadores En memoria compartida: n/log n En hipercubo, y malla o anillo con comunicaciones directas: n/((1+ts+tw)*log n) En malla sin comunicaciones directas: n/(log n+(ts+tw)*2*n) En anillo sin comunicaciones directas y en red: n/(log n+(ts+tw)*n) 1/(ts+tw)

29 Programación Paralela Análisis de Algoritmos Paralelos 29 Eficiencia Da idea de la porción de tiempo que los procesadores se dedican a trabajo útil. Es el speed-up partido por el número de procesadores: E(n,p)=S(n,p)/p=t(n)*p/t(n,p) Valor entre 0 y 1. Para un tamaño de problema fijo se aleja del valor óptimo (1) al aumentar el número de procesadores. Para un número de procesadores fijo aumenta al aumentar el tamaño del problema.

30 Programación Paralela Análisis de Algoritmos Paralelos 30 Eficiencia, suma con n/2 procesadores En memoria compartida: 2/log n 0 En hipercubo, y malla o anillo con comunicaciones directas: 2/((1+ts+tw)*log n) 0 En malla sin comunicaciones directas: 2/(log n+(ts+tw)*2*n) 0 En anillo sin comunicaciones directas y en red: 2/(log n+(ts+tw)*n) 0

31 Programación Paralela Análisis de Algoritmos Paralelos 31 Speed-up, suma con p procesadores Con p fijo En memoria compartida: n/(n/p+log p) p En hipercubo, y malla o anillo con comunicaciones directas: n/(n/p+(1+ts+tw)*log p) p En malla sin comunicaciones directas: n/(n/p+log p+(ts+tw)*2*p) p En anillo sin comunicaciones directas y en red: n/(n/p+log p+(ts+tw)*p) p

32 Programación Paralela Análisis de Algoritmos Paralelos 32 Eficiencia, suma con p procesadores Con p fijo En memoria compartida: n/(n+p*log p) 1 En hipercubo, y malla o anillo con comunicaciones directas: n/(n+(1+ts+tw)*p*log p) 1 En malla sin comunicaciones directas: n/(n+p*log p+(ts+tw)*2*p*p) 1 En anillo sin comunicaciones directas y en red: n/(n+p*log p+(ts+tw)*p 2 ) 1

33 Programación Paralela Análisis de Algoritmos Paralelos 33 Coste Representa el tiempo (el trabajo) realizado por todo el sistema en la resolución del problema. Es el tiempo de ejecución por el número de procesadores usados: C(n,p)=p*t(n,p) En algoritmo óptimo coincidiría con el tiempo secuencial, pero en general es mayor. La diferencia se llama función overhead: to(n,p)=C(n,p)-t(n)=p*t(n,p)-t(n) Es distinto de la idea de overhead vista anteriormente y difícilmente medible.

34 Programación Paralela Análisis de Algoritmos Paralelos 34 Distribución del trabajo Es importante para mejorar el balanceo. En memoria distribuida puede reducir el coste de las comunicaciones asignando datos que se comunican frecuentemente a procesadores vecinos. Evita comunicaciones, congestión de la red y colisiones. En memoria compartida puede influir en el coste de los accesos a memoria, si procesadores distintos acceden a bloques distintos. Normalmente que los procesadores accedan a bloques de datos. Esto además mejora el uso de la jerarquía de memoria.

35 Programación Paralela Análisis de Algoritmos Paralelos 35 Distribución de datos. Suma de n números. En malla

36 Programación Paralela Análisis de Algoritmos Paralelos 36 Distribución de datos. Suma de n números. En anillo comunicaciones 5 comunicaciones

37 Programación Paralela Análisis de Algoritmos Paralelos 37 Escalabilidad Para un sistema paralelo interesa que las prestaciones se sigan manteniendo en cierta medida al aumentar el tamaño de sistema. No se puede seguir manteniendo las prestaciones manteniendo el tamaño del problema fijo y aumentando el número de procesadores. Se tratará de mantener las prestaciones al aumentar el tamaño del sistema pero aumentando el tamaño del problema. Los sistemas (físicos o lógicos) que cumplen esto se dicen escalables. La idea es, para un determinado programa, ser capaces de determinar si en el futuro, cuando aumente el número de procesadores y el tamaño de problemas que se quieren resolver, se seguirán manteniendo las prestaciones.

38 Programación Paralela Análisis de Algoritmos Paralelos 38 Función de isoeficiencia Da idea de cómo debe crecer el tamaño del problema en función del número de procesadores para mantener la eficiencia constante. to(n,p)=p*t(n,p)-t(n) t(n,p)=(to(n,p)+t(n))/p E(n,p)=t(n)/(to(n,p)+t(n)) t(n)=(E(n,p)/(1+E(n,p))*to(n,p)=K*to(n,p) Para obtener cómo debe crecer n en función de p para mantener la eficiencia constante basta comparar el tiempo secuencial con la función overhead del paralelo.

39 Programación Paralela Análisis de Algoritmos Paralelos 39 Isoeficiencia, suma con p procesadores Sin constantes, pues interesa la forma en que crece En memoria compartida, hipercubo, y malla o anillo con comunicaciones directas : t(n)=n to(n,p)=n+p*log p Función de isoeficiencia: p*log p En malla sin comunicaciones directas: t(n)=n to(n,p)=n+p*log p+p*p Función de isoeficiencia: p 1.5 (la mayor) En anillo sin comunicaciones directas y en red: t(n)=n to(n,p)=n+p*log p+ p 2 Función de isoeficiencia: p 2 (la mayor)

40 Programación Paralela Análisis de Algoritmos Paralelos 40 Isoeficiencia, suma con p procesadores Para mantener las prestaciones al variar de p1 a p2 procesadores, el tamaño debe aumentar proporcional a f(p2)/f(p1) Procesadores:4 a 1616 a 6464 a 256 memoria compartida, hipercubo, y malla o anillo con comunicaciones directas malla sin comunicaciones directas anillo sin comunicaciones directas y en red: Todos escalables. Unos más que otros.

41 Programación Paralela Análisis de Algoritmos Paralelos 41 Speed-up escalado Representa la relación entre el tiempo de ejecución secuencial y el paralelo, pero aumentando proporcionalmente el número de procesadores: Se(n,p)=t(n)*p/t(n*p,p) En hipercubo: Se(n,p)=n*p/(n+(1+ts+tw)*log p) En malla: Se(n,p)=n*p/(n+(ts+tw)*p+log p) El de hipercubo es más escalable pues su cociente es menor.

42 Programación Paralela Análisis de Algoritmos Paralelos 42 Estudio experimental de la escalabilidad Se estudia el número de operaciones por segundo (flops) por procesador: Variando el tamaño del problema al variar el número de procesadores, O utilizando el máximo tamaño de problema que cabe en la memoria del sistema proc tamflops proc tamflops

43 Programación Paralela Análisis de Algoritmos Paralelos 43 Estudio experimental Diseño de experimentos que nos permitan obtener conclusiones: ­ Determinar qué tipo de conclusiones se quiere obtener: en cuanto a speed-up, escalabilidad. ­ Definir el rango de los experimentos: número de procesadores y tamaño del problema. ­ Comparar los resultados experimentales con los teóricos. ­ Si no coinciden revisar los estudios teóricos o la forma en que se han hecho los experimentos. Pueden consistir en: ­ Estudiar el programa completo. ­ Estudiar el comportamiento en los distintos procesadores: ¿balanceo de la carga? ¿sincronización?... ­ Dividir el programa en partes para estudiarlas por separado.

44 Programación Paralela Análisis de Algoritmos Paralelos 44 Comparación estudio teórico-experimental Se pueden estimar los valores constantes en las fórmulas teóricas: ­ En particular ts y tw se obtienen con un ping-pong, o pueden tener valores distintos para distintas operaciones de comunicación. ­ El coste de la computación se puede estimar ejecutando parte del programa en un procesador. Ajuste del modelo teórico con datos experimentales: ­ Obtener valores constantes en el estudio teórico haciendo ajuste de mínimos cuadrados con resultados experimentales. ­ Estudio asintótico: comportamiento teniendo en cuenta el término de mayor orden de la fórmula teórica, compararlo con la gráfica experimental.


Descargar ppt "Programación Paralela Análisis de Algoritmos Paralelos 1 PROGRAMACIÓN PARALELA Tema 5: Análisis de algoritmos paralelos REFERENCIAS La mayoría de los libros."

Presentaciones similares


Anuncios Google