La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Teorema de Thales. Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Algunos datos Thales era un hombre que se destacó en varia áreas.

Presentaciones similares


Presentación del tema: "Teorema de Thales. Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Algunos datos Thales era un hombre que se destacó en varia áreas."— Transcripción de la presentación:

1 Teorema de Thales

2 Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Algunos datos Thales era un hombre que se destacó en varia áreas : comerciante, hábil en ingeniería, astrónomo, geómetra

3 Se cuenta que comparando la sombra de un bastón y la sombra de las pirámides, Thales midió, por semejanza, sus alturas respectivas. La proporcionalidad entre los segmentos que las rectas paralelas determinan en otras rectas dio lugar a lo que hoy se conoce como el teorema de Thales.

4 Entremos en el siguiente link, para observar una animación que nos muestra como Thales midió la Gran Pirámide TC.asp?TemaClave=1224http://www.librosvivos.net/smtc/home TC.asp?TemaClave=1224

5 Rayos solares Pirámide S (sombra) H (altura de la pirámide) s (sombra) h (altura de bastón) Puesto que los rayos del Sol inciden paralelamente sobre la Tierra los triángulos rectángulos determinados por la altura de la pirámide y su sombra Podemos, por tanto, establecer la proporción H S = h s De donde H= hS s y el determinado por la altura del bastón y la suya son semejantes

6 Ahora El famoso teorema

7 TS "Si tres o más rectas paralelas son intersecadas por dos transversales, los segmentos de las transversales determinados por las paralelas, son proporcionales En el dibujo: Si L 1 // L 2 // L 3 L1L1 L2L2 L3L3, T y S transversales, los segmentos a, b, c y d son proporcionales Es decir: a a b b = c c d d ¿DE ACUERDO?

8 Pero, ¿el Teorema de Thales, se cumple en todos los casos? 0inicio/ThThales.htmhttp://roble.pntic.mec.es/jarran2/cabriweb/ 0inicio/ThThales.htm

9 L1L1 L2L2 L3L3 T S 8 24 x 15 Un ejemplo: En la figura L 1 // L 2 // L 3, T y S transversales, calcula la medida x Ordenamos los datos en la proporción, de acuerdo al teorema de Thales Es decir: 8 24 = X 15 Y resolvemos la proporción 24 x = 8 15 X = X = 5 Sencillo

10 Otro ejemplo: en la figura L 1 // L 2 // L 3, T y S son transversales, calcula x y el segmento CD Formamos la proporción 3 2 = x+4 x+1 Resolvemos la proporción 3(x + 1) = 2(x + 4) 3x + 3 = 2x + 8 3x - 2x= X=5 L1L1 L2L2 L3L3 T S x+4 x C D Luego, como CD = x + 4 CD= = 9

11 Y nuevamente pensando en la pirámide….. TRIÁNGULOS DE THALES Dos triángulos se dicen de Thales o que están en posición de Thales, cuando: Tienen un ángulo común y los lados opuestos a dicho ángulo son paralelos. Dos triángulos se dicen de Thales o que están en posición de Thales, cuando: Tienen un ángulo común y los lados opuestos a dicho ángulo son paralelos. S (sombra) H (altura de la pirámide) s (sombra) h (altura de bastón) Podemos ver esto si trasladamos el triángulo formado por el bastón, su sombra y los rayos solares hacia el formado por la pirámide

12 Triángulos de Thales En dos triángulos de Thales, sus lados, tienen la misma razón de semejanza En dos triángulos de Thales, sus lados, tienen la misma razón de semejanza B C A D E De acuerdo a esto, en la figura BC// ED, entonces, con los lados de los triángulos AED y ABC ocurre: AE AB = ED O también AE ED = AB BC A esta forma de tomar los trazos, se le llama la doble L

13 Aplicaciones de esta idea Calcula la altura del siguiente edificio x Escribimos la proporción 3 5 = 15 x Y resolvemos la proporción 3 x = 5 15 x = 75 3 X = 25 Por que 3+12=15

14 Otro ejercicio En el triángulo ABC, DE//BC, calcule x y el trazo AE A B C x+3x 8 12 D E Formamos la proporción 8 X+3 = 12 2x+3 Resolvemos la proporción Por que x+3+x = 2x+3 8(2x + 3) = 12( x + 3) 16x + 24 = 12x x – 12x = 36 – 24 4x = 12 X = 12 = 3 4 Por lo tanto, si AE = x + 3 = = 6

15 A RESOLVER MÁS EJERCICIOS PARA REFORZAR LO APRENDIDO

16 Halla la longitud del segmento x en cada caso.

17 Extracto de un viejo libro de agrimensura:...Nada más fácil que calcular la altura AX. Sea MN = 1,17 m la altura del poste; AB =12,45 m y NO= 0,9 m. Calcula la altura del árbol.

18 En la época de Thales aparece el sistema de numeración llamado ático. Aplicar el teorema de Tales para medir la altura de una torre, pero utilizando para su cálculo el sistema de numeración ático. Los datos son:

19 Como actividad de cierre mediremos nuestra altura de la misma manera en que Thales midió la Gran Pirámide.Esta actividad se hará en parejas explicando como lo hicieron.


Descargar ppt "Teorema de Thales. Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Algunos datos Thales era un hombre que se destacó en varia áreas."

Presentaciones similares


Anuncios Google