La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Congruencias y semejanzas de figuras planas ¿Cómo son las figuras mostradas? 2 Son idénticas.

Presentaciones similares


Presentación del tema: "Congruencias y semejanzas de figuras planas ¿Cómo son las figuras mostradas? 2 Son idénticas."— Transcripción de la presentación:

1

2 Congruencias y semejanzas de figuras planas

3 ¿Cómo son las figuras mostradas? 2 Son idénticas

4 . Ejemplos de Congruencia ESTAS SI SON FIGURAS CONGRUENTES ESTAS SON FIGURAS CONGRUNTES ESTAS NO SON FIGURAS CONGRUNTES

5 Congruencia. Dos figuras son congruentes cuando tienen la misma forma y tamaño, es decir, si al colocarlas una sobre otra son coincidentes en toda su extensión.

6 Criterios de congruencia

7 Triángulos congruentes Dos triángulos son congruentes si y sólo si sus partes correspondientes son congruentes. A B C D E F ABC DEF

8 Definición: Dos triángulos ABC y DEF son correspondientes si: Sus lados correspondientes son iguales Sus ángulos correspondiente son iguales. En la figura

9 POSTULADOS DE CONGRUENCIA Criterio LLL: Si en dos triángulos los tres lados de uno son respectivamente congruentes con los de otro, entonces los triángulos son congruentes. Criterio LAL: Si los lados que forman a un ángulo, y éste, son congruentes con dos lados y el ángulo comprendido por estos de otro triángulo, entonces los triángulos son congruentes. Criterio ALA: Si dos ángulos y el lado entre ellos son respectivamente congruentes con dos ángulos y el lado entre ellos de otro triángulo, entonces los triángulos son congruentes. Criterio LLA: Si el lado más largo del triangulo, junto con otro lado de éste, y el ángulo superior del lado más largo del triángulo son congruentes con los del otro triangulo, entonces los triángulos son congruentes.

10 Postulado LLL Si los lados de un triángulo son congruentes con los lados de un segundo triángulo, entonces los triángulos son congruentes. A B C D E F ABC DEF

11 Postulado ALA Si dos ángulos y el lado incluido de un triángulo son congruentes con dos ángulos y el lado incluido de otro triángulo, los triángulos son congruentes. A B C D E ABC CDE

12 Postulado AAL Si dos ángulos y el lado no incluido de un triángulo son congruentes con dos ángulos y el lado no incluido de otro triángulo, los triángulos son congruentes. A B C D E ABC EFD F

13 Postulado LAL Si dos lados y el ángulo incluido de un triángulo son congruentes a dos lados y el ángulo incluido de otro triángulo, entonces los dos triángulos son congruentes. A B CD E ABC DEF F

14 Ejemplos Ejemplos: 1) En la figura, se tiene un triángulo ABC isósceles ( AC = BC) y se ha dividido su base AB en 4 partes iguales. ¿Cuáles triángulos son congruentes?

15 2) Dado el triángulo rectángulo de lados a,b y c, se han construido las figuras que están a sus lados copiándolo varias veces y colocándolo en diferentes posiciones. Analiza los ángulos que son congruentes en las distintas posiciones. ¿Podrías deducir que el cuadrado que se forma es congruente en ambas figuras? Ejemplos

16

17

18 PROPORCIONALIDAD DE SEGMENTOS

19 TEOREMA DE THALES

20

21

22 21 A B C BASE MEDIA PROPIEDAD M N

23 FIGURAS SEMEJANTES

24 23 ¿Cómo son las figuras mostradas? Son proporcionales Son semejantes

25 Semejanza Dos figuras que tienen la misma forma, aun con diferentes dimensiones, se llaman semejantes. Dos figuras son semejantes si sus ángulos correspondientes son iguales y sus lados correspondientes proporcionales. Los elementos que se corresponden (puntos, segmentos, ángulos …) se llaman homólogos.

26 SEMEJANZA Dos figuras del plano son semejantes si los cocientes de de los segmentos determinados por pares cualesquiera de puntos correspondientes son iguales. es la razón de semejanza

27 Dos triángulos son semejantes si tienen los lados proporcionales y los ángulos iguales. El cociente se llama razón de semejanza. SEMEJANZA

28 27 SEMEJANZA DE TRIÁNGULOS

29 28 CASOS DE SEMEJANZA DE TRIÁNGULOS

30 Criterios de semejanza de triángulos existen algunos principios que nos permiten determinar si dos triángulos son semejantes sin necesidad de medir y comparar todos sus lados y todos sus ángulos. Estos principios se conocen con el nombre de criterios de semejanza de triángulos

31 Existen tres criterios de semejanza de triángulos 1. AA ( ángulo-ángulo) 2. LLL (lado-lado-lado) 3. LAL (lado-ángulo-lado)

32 SEMEJANZA DE TRIÁNGULOS POSTULADOS DE SEMEJANZA Criterio AA de semejanza. Teorema: Si dos triángulos tienen sus dos ángulos correspondientes congruentes, entonces el tercero también será congruente y los triángulos son semejantes. Criterio LAL de semejanza. Teorema: Dos triángulos son semejantes si tienen un ángulo congruente comprendido entre lados proporcionales. Criterio LLL de semejanza. Teorema: "Si los lados correspondientes de dos triángulos son proporcionales, entonces los triángulos son semejantes". Criterio AA de semejanza. Teorema: Si dos triángulos tienen sus dos ángulos correspondientes congruentes, entonces el tercero también será congruente y los triángulos son semejantes. Criterio LAL de semejanza. Teorema: Dos triángulos son semejantes si tienen un ángulo congruente comprendido entre lados proporcionales. Criterio LLL de semejanza. Teorema: "Si los lados correspondientes de dos triángulos son proporcionales, entonces los triángulos son semejantes".

33 A´A´ B´B´ C A B C I.Primer criterio AA Dos triángulos que tienen los dos ángulos congruentes son semejantes entre sí. ´ ´ ´ Es decir: Si ´, ´ de lo anterior se deduce que ´ Entonces, ABC semejante con A´B´C´

34 Ejemplo ¿Son los siguientes triángulos semejantes? ¡SI! Por que al tener dos de sus ángulos congruentes, cumplen con el criterio AA

35 II. Segundo criterio LLL Dos triángulos que tienen los tres lados proporcionales son semejantes entre sí. A´A´ B´B´ C A B C a a´ El cociente obtenido de comparar los lados homólogos entre sí recibe el nombre de razón de semejanza. Es decir: a a´ = b b´ = c c´ =K b b´ c c´ Entonces, ABC semejante con A´B´C´

36 Ejemplo Determine si los triángulos ABC y PQR son semejantes A B C P Q R 1,5 3, Verifiquemos si las medidas de los lados son proporcionales 1,5 3 == 3, Efectivamente, así es, ya que los productos cruzados son iguales 1,5 7 = 3 3,5 = 10,5 3,5 10 = 7 5 = 35 Por lo tanto Triángulos ABC y PQR son semejantes por criterio LLL

37 III. Tercer criterio LAL Dos triángulos que tienen dos lados proporcionales y el ángulo comprendido entre ellos es igual, son semejantes entre sí. A´A´ B´B´ C A BC Es decir: a a´ a a´ = c c´ c y = ´ ´ Entonces ABC semejante a A´B´C´

38 Ejemplo ¿Son los triángulos ABC y DEF semejantes? A B C 4 3 D E F 9 12 Veamos si dos de sus lados son proporcionales 3 9 = 4 12 Efectivamente así es, ya que los productos cruzados son iguales 3 12 = 4 9 ¿Los ángulos formados por estos dos lados son congruentes? Por criterio LALTriángulos ABC y DEF son SEMEJANTES Efectivamente, porque, tal como se señala en el dibujo, ambos son rectos

39 Algunas aplicaciones de estos conceptos

40 Ejercicio Conocemos las dimensiones de los lados de dos triángulos. Comprueba que son semejantes y halla la razón de semejanza. a) 8 cm, 10 cm, 12 cm b) 52 cm, 65 cm, 78 cm Comprobemos que las medidas de los lados homólogos son proporcionales Entonces los triángulos son semejantes por criterio LLL Representemos el ejercicio Para calcular la razón de semejanza se calcula una de las razones 65 : 10 = 6, = = = 6,5 Efectivamente, al calcular los productos cruzados, podemos ver la proporcionalidad entre las medidas de los lados respectivos = 8 65 = = = 780

41 Ejercicio Tenemos un triángulo cuyos lados miden 3 cm, 4 cm y 5 cm respectivamente y deseamos hacer una ampliación a escala 3:1. ¿Cuánto medirá cada lado?.¿Cuál es la razón de semejanza?. Luego, debe ocurrir: x y z Entonces:X= 3· 3= 9 Y = 4 · 3 =12 12 = Z = 5 · 3= 15 La razón de semejanza es 3 Representamos la situación = X3X3 = Y4Y4 Z5Z5 = 3131 =3 Escala de ampliación X3X3 = 3 Y4Y4 Z5Z5

42 Los lados de un triángulo miden 30, 40 y 50 centímetros respectivamente. Los lados de un segundo triángulo miden 12, 16 y 20 centímetros. ¿Son semejantes?. En caso afirmativo, ¿cual es la razón de semejanza? = = Para calcular la razón de semejanza se calcula una de las razones 50 : 20 = 2,5 Para comprobar la proporcionalidad podemos efectuar los productos cruzados 30x16=480 y 40x12=480 además 40x20=800 y 16x50=800 Comprobemos que las medidas de los lados homólogos son proporcionales

43 Un poste vertical de 3 metros proyecta una sombra de 2 metros; ¿qué altura tiene un árbol que a la misma hora proyecta una sombra de 4,5 metros?(Haz un dibujo del problema). 4,5m x 3m 2m sombra posteposte Los triángulos definidos por el poste y su sombra y el árbol y su sombra son semejantes, por lo tanto De donde = 6,75m Son semejantes por que cumplen el criterio AA, tienen iguales el ángulo recto y el ángulo de elevación que forman los rayos solares con el suelo = 3x3x 2 4,5 X = 3 4,5 2 Formamos la proporción


Descargar ppt "Congruencias y semejanzas de figuras planas ¿Cómo son las figuras mostradas? 2 Son idénticas."

Presentaciones similares


Anuncios Google