La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Secciones Cónicas María del Coral Alicia González Rebollo Rafael Pastor de la Fuente Pilar Tejedor Martín José Daniel Orzáez Hernández.

Presentaciones similares


Presentación del tema: "Secciones Cónicas María del Coral Alicia González Rebollo Rafael Pastor de la Fuente Pilar Tejedor Martín José Daniel Orzáez Hernández."— Transcripción de la presentación:

1 Secciones Cónicas María del Coral Alicia González Rebollo Rafael Pastor de la Fuente Pilar Tejedor Martín José Daniel Orzáez Hernández

2 SE LLAMAN SECCIONES CÓNICAS PORQUE PROVIENEN DE LA INTERSECCIÓN DE UN CONO CON UN PLANO.

3 1. C IRCUNFERENCIA : Es el lugar geométrico de los puntos del plano cuya distancia a otro punto llamado CENTRO es constante, a dicha distancia se llama RADIO.

4 Ejercicio: Calcula la ecuación de la circunferencia que tiene centro en el punto C=(3,0) y cuyo radio mide 3cm. La ecuación de la circunferencia de centro (a,b) Y radio r en forma REDUCIDA es: La ecuación de la circunferencia en forma DESARROLADA es:

5 Ecuación reducida. Ecuación desarrollada.

6 Posición relativa RECTA y CIRCUNFERENCIA: Para estudiar la posición se resuelve el sistema de ecuaciones. Paso 1: despejamos de la lineal. Paso 2: sustituimos en la no lineal Ejercicio: Estudia la posición relativa de la recta r:x-y+5=0 y la circunferencia x²+y²-6x+8y-25=0

7 Posición relativa DOS CIRCUNFERENCIAS: Paso 1: Calculamos la distancia entre los centros. Paso 2: Calculamos la suma de los radios. Paso 3: Calculamos la resta de los radios. Paso 4: Aplicamos la tabla siguiente. Ejercicio: Estudia la posición relativa de las circunferencias: C1: x²+y²-6x+8y-25=0 C2: x²+y²-1=0

8 POTENCIA: Se cumple que: Esto es lo mismo que: Es decir: A esta constante la llamamos P PP POTENCIA del punto P respecto de la circunferencia C.

9 Para calcular la potencia de un punto respecto a C, hay que sustituir el punto en C. La potencia sirve para saber la posición relativa entre un punto y una circunferencia: Ejercicio: Estudia la posición de P(-3,2), Q(0,6) y R=(1,2) respecto de C: x²+y²-6y=0

10 Ejercicio: Estudia para qué valores de m el punto P=(5,m) es interior, exterior o perteneciente a la circunferencia C: x²+y²-4x-4y-17=0 Calcula el lugar geométrico del plano que tienen la misma potencia respecto de las circunferencias C1:x²+y²-4x-4y-17=0 C2: x²+y²+1=0

11 EJE RADICAL: Es el lugar geométrico de los puntos del plano que tienen la misma potencia respecto a las dos circunferencias: Propiedades del eje radical: 3.-Si las circunferencias son secantes pasa por los puntos de corte. 1.-Es perpendicular a la recta que une los centros. 2.-Pasa por el punto medio de las tangentes exteriores comunes. 4.-Si son tangentes, el eje radical es tangente en el punto de tangencia.

12 Ejercicio: Halla el centro radical de las circunferencias siguientes: C1: x²+y²=16 C2: x²+y²-2x+4y-4=0 C3: x²+y²+6x-6y+14=0 Calcula la ecuación de la circunferencia que tiene por centro el punto C(1,4) y es tangente a la recta 3x+4y- 4=0. Calcula la ecuación de una circunferencia concéntrica a C: 4x²+4y²-24x+4y+33=0 y cuyo radio mide la mitad.

13 Ejercicio: Calcula el eje radical de las circunferencias: C1: x²+y²-4x+2y+4=0 C2: x²+(y-3)²=4 C3:2 x²+2y²+8x-24=0 Calcula la posición relativa de la circunferencia : C1: 2x²+2y²-6x-6y+7=0 Con las circunferencia: C2: x²+y²-2x-3y+3=0 C3: x²+y²=-1/4 C4: 2x²+2y²=5 C5: x²+y²-3y+2=0

14 Todo el peso se apoya en el suelo sobre un punto. La superficie de rozamiento es mínima. La primera rueda de la que se tiene constancia se encontró en un grabado de Mesopotamia en el A.C. LA RUEDA:

15 LA NORIA:

16 EL ARO:

17 Podemos relacionar el radio r o diámetro del anillo con la medida del dedo L. EL ANILLO:

18 Podemos construir una espiral, en la naturaleza se encuentra en el caparazón de algunos moluscos. ESPIRAL:

19 Podemos calcular la velocidad de giro. DISCO DURO:

20 Para generar energía no contaminante. Para las ruedas de molino. RUEDA DE PALETAS:

21 Cambia la dirección de la fuerza aplicada a un objeto. LA POLEA:

22 Para localizar situaciones y medir distancias. La longitud de un arco es el radio por el ángulo. PARALELOS Y MERIDIANOS:

23 2. P ARÁBOLA : Lugar geométrico de los puntos que equidistan de un punto llamado foco y de una recta llamada directriz.

24 Simplificando esta ecuación queda: Los puntos de la parábola cumplen:

25 La parábola en otros casos:

26 Ejercicio: Ejercicios 13y 14 pag 145. Ejercicios 36,37,38,39,40 pag 152 y153.

27 LOGO DE MARCA COMERCIAL

28 PUENTES:

29 TRAYECTORIAS DE PROYECTILES:

30 PISTAS DE PATINAJE

31 NAVES ESPACIALES

32 CIUDAD Y ARTES DE LAS CIENCIAS (VALENCIA)

33 3. E LIPSE : Es el lugar geométrico de los puntos del plano tales que la suma de sus distancias a dos puntos llamados focos es constante.

34 Ecuación fundamental de la elipse: La elipse cumple que la suma de las distancias de cada foco al punto P es siempre la misma: La excentricidad de la elipse es: Si e=0 es una circunferencia Si e= 1 es una recta e SIEMPRE ESTÁ ENTRE 0 Y 1

35 Operando y reduciendo lo máximo posible nos queda: Esta es la ecuación reducida de la elipse.

36 La elipse en otros casos:

37 Ejercicio: Ejercicios 15 y 16 pag 147. Ejercicios 45,46,47,48,49,50 pag 153.

38 El anfiteatro de Pompeya. ANFITEATROS:

39 Plaza elíptica. LA CASA BLANCA:

40 Vistas en perspectiva. CIRCUNFERENCIAS:

41 Determina la velocidad de los planetas. LEY DE KEPLER:

42 Arte en las calles de Chicago. CLOUD GATE ELIPSE

43 Arte y geometría. FELICE VARINI

44 4. H IPÉRBOLA : Es el lugar geométrico de los puntos del plano tales que la diferencia de sus distancias a dos puntos llamados focos es constante.

45 Ecuación fundamental de la hipérbola: En este caso: La excentricidad de la elipse es: Si e= 1 es una recta e SIEMPRE ES MAYOR QUE 1

46 Las asíntotas de la hipérbola son:

47 Operando y reduciendo lo máximo posible nos queda: Esta es la ecuación reducida de la hipérbola.

48 La hipérbola en otros casos:

49 Ejercicio: Ejercicios 17 y 18 pag 149. Ejercicios 41,42,43,44 pag 152 y 153.

50 Aeropuerto de Barcelona. TORRE DE AERPUERTO

51 CHIMENEAS EN CENTRALES TÉRMICAS

52 INTERFERENCIAS DE GOTAS DE AGUA

53 BÓBEDAS DE LA SAGRADA FAMILIA:

54 Fin

55 La excentricidad mide lo achatada que está la elipse, cuanto más cerca de uno está su valor, más achatada está. VOLVER

56


Descargar ppt "Secciones Cónicas María del Coral Alicia González Rebollo Rafael Pastor de la Fuente Pilar Tejedor Martín José Daniel Orzáez Hernández."

Presentaciones similares


Anuncios Google