La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1 Matemática Básica (CC.) Sesión 9.2: Funciones 1.Definición 2.Dominio y rango 3.Grafica 4.Aplicaciones.

Presentaciones similares


Presentación del tema: "1 Matemática Básica (CC.) Sesión 9.2: Funciones 1.Definición 2.Dominio y rango 3.Grafica 4.Aplicaciones."— Transcripción de la presentación:

1 1 Matemática Básica (CC.) Sesión 9.2: Funciones 1.Definición 2.Dominio y rango 3.Grafica 4.Aplicaciones

2 2 En forma breve, una función es un tipo especial de relación que expresa como una cantidad (la salida) depende de otra cantidad (la entrada). Por ejemplo, cuando se invierte dinero a alguna tasa de interés, el interés I (salida) depende del tiempo t (entrada) que el dinero este invertido. Para expresar esta dependencia decimos que I es una función de t. Las relaciones funcionales como esta en general se especifican mediante una formula que muestra lo que debe hacerse con la entrada para determinarla salida FUNCIONES

3 3 Para ejemplificar esto, suponga que $100 ganan un interés simple a una tasa anual del 6%. Entonces, como sabemos que el interés y el tiempo están relacionados por la formula I =100(0,06)t(1) donde I esta en dólares y t en años. Por ejemplo si t=0,5 entonces I =100(0,06)(0,5)=3 (2) Así la formula (1) asigna a la entrada 0,5 la salida 3. Podemos pensar en la formula (1) como una regla que asigna a cada numero de entrada t exactamente un numero de salida I

4 4 DEFINICION DE FUNCION Una función es una regla o correspondencia que asigna a cada número de entrada un único número de salida. Al conjunto de número de entrada para los cuales se aplica la regla se llama el dominio de la función. Al conjunto de números de salida se llama rango. Para la función de interés definida por la formula (1), el numero de entrada t no puede ser negativo, ya que el tiempo negativo no tiene sentido. Así, el dominio consiste en todos los números no negativos; esto es t 0. De (2) vemos que cuando la entrada es 0,5, la salida es 3. De modo que 3 esta en el rango.

5 5 Una variable que representa a los números de entradas para una función se denomina variable independiente. Una variable que representa a los números de salida se denomina variable dependiente, ya que su valor depende del valor de la variable independiente. Decimos que la variable dependiente es función de la variable independiente. Esto es la salida es una función de la entrada. Así para la formula I=1001(0,06)t, la variable independiente es t, la variable dependiente es I, e I es una función de t.

6 6 NOTACION FUNCIONAL Si decidimos llamar f a una función y x es una de las entradas en el dominio de f, entonces f (x), que se lee f de x, representara el numero de salida en el rango de f que corresponde a la entrada x. Así: f ( x ) entrada salida nombre de la función

7 7 EJEMPLO 1: Función de utilidad Cuando se venden q unidades de cierto producto, la utilidad P esta dada por la ecuación P=1.25q 1.¿Es P función de q? 2.¿Cuál es la variable dependiente y cual la independiente? 3.¿Cuál es el dominio? 4.¿Y el rango?

8 8 DETERMINACIÓN DEL DOMINIO DE UNA FUNCIÓN El dominio de una función es el conjunto de todos los números para los cuales la regla de la función tiene sentido. EJEMPLO 2 Determinar el dominio de las siguientes funciones

9 9 GRAFICAS DE FUNCIONES El método más común para visualizar una función es su grafica. Por definición la grafica de una función f es la grafica de la ecuación y=f (x) para x en el dominio de f. EJEMPLO 3 Haga una grafica de la función del ejemplo 1, indicando el dominio y rango

10 10 INFORMACION A PARTIR DE LA GRAFICA La grafica de una función nos da una imagen útil del comportamiento, o la historia de vida, de una función. Como la coordenada y de cualquier punto (x;y) de la grafica es f(x), podemos leer el valor de f(x) a partir de la grafica, como la altura dirigida de esta ultima a partir del punto x. La grafica de también nos permite tener una imagen del dominio y del rango de sobre el eje x y el eje y respectivamente. x y y = f (x) rango 0 dominio x y f (1) f (2) f (x) (x,f (x)) 1 2 x 0

11 11 EJEMPLO 4 En la figura se muestra se muestra la grafica de una función f. Hallar: 1. f (-1) y f (3) 2. El dominio 3. El rango 4.Los x talque f (x)>0 5.Los x talque f (x)=0 6.Los x talque f (x)<0 x y

12 12 PRUEBA DE LA RECTA VERTICAL La grafica de una función es una curva en el plano. Pero surge la siguiente cuestión; ¿Cuáles curvas en el plano son graficas de funciones? El siguiente resultado, conocido como prueba de la recta vertical responde a lo anterior. Toda recta vertical corta a la grafica de una función a lo mas en un punto. x y a (a,b) x y a (a,c) Es la grafica de una función No es la grafica de una función

13 13 EJERCICIO 1: Altas en un hospital. Una compañía de seguros examinó el registro de un grupo de individuos hospitalizados por una enfermedad en particular. Se encontró que la proporción total de quienes habían sido dados de alta al final de t días de hospitalización está dada por: Determine: a.Hallar e interpretar f (0) b.Hallar e interpretar f (100) c.¿Cuántos días después se habrá dado de alta al 99% del grupo? EJERCICIOS DE APLICACION

14 14 EJERCICIO 2 En la figura se muestra la grafica de una función f. A partir de ella se pide hallar: a.f(0) y f(6) b.El dominio y el rango. c.Los valores de x talque f(x) = 0 d.Los valores de x talque f(x) > 0 e.Los puntos de intersección con los ejes coordenados y x

15 15 EJERCICIO 3: Vasos de refresco El número de vasos de refresco vendidos a través de una máquina en una estación de servicio está indicado por la tabla siguiente: a.Haz una representación gráfica b.¿Cuál es la hora de mayor consumo de refrescos? c.¿Cuántos refrescos se han consumido hasta las 11 horas? d.Si la capacidad de la máquina es de 100 vasos, ¿a qué hora se ha rellenado? e.¿Puede representar una situación real de esta tabla? ¿Por qué? Hora del día # vasos

16 16 EJERCICIO 4: Paseo de dos amigos Pedro y Pamela son compañeros de clase y quedan un día para salir. Pedro sale de su casa y recoge a Pamela, que tarda un poco en bajar. Después dan un paseo y se sientan en una cafetería a tomar un refresco. Al regreso se acercan a casa de Luís a recoger unos apuntes y allí se entretienen un tiempo. Después regresan a casa. La gráfica del paseo viene aquí representada.

17 17 Responder a las preguntas de planteadas en la pagina 151 de la separata, ejercicio 7 Hora Espacio (metros)

18 18 EJERCICIO 5: Salario Un oficial gana soles la hora y su ayudante soles la hora. Un día, el ayudante empieza a trabajar a las 8:00 a.m. y el oficial a las 10:00 a.m. A.¿Cuánto dinero lleva ganado cada uno a las 10:00 a.m. y a las 11:00 a.m.? B.El oficial y, su ayudante siguen trabajando hasta las 3:00 p.m.. Construye una tabla en la que reflejes hora a hora el dinero que va ganando cada uno de ellos. C.Representa gráficamente los valores de la tabla. ¿A qué hora han ganado la misma cantidad? D.¿Puedes deducir la expresión algebraica o fórmula que determina lo que gana el oficial según las horas trabajadas? ¿Y su ayudante?


Descargar ppt "1 Matemática Básica (CC.) Sesión 9.2: Funciones 1.Definición 2.Dominio y rango 3.Grafica 4.Aplicaciones."

Presentaciones similares


Anuncios Google