La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Prácticas de Física I Departamento de Física Aplicada I Escuela Politécnica Superior.

Presentaciones similares


Presentación del tema: "Prácticas de Física I Departamento de Física Aplicada I Escuela Politécnica Superior."— Transcripción de la presentación:

1 Prácticas de Física I Departamento de Física Aplicada I Escuela Politécnica Superior

2 Toda ciencia experimental se basa en observaciones cuantitativas que llamamos medidas. A su vez todo proceso de medida está sujeto a limitaciones que se traducen inevitablemente en la existencia de cierta incertidumbre asociada al resultado y que constituye una indicación cuantitativa de la calidad del mismo. Medida = (Valor numérico ± incertidumbre) unidades ¡Es esencial especificar la incertidumbre de una medida ya que nos indica el grado de fiabilidad y de exactitud de la misma!

3 Errores de calibración. Condiciones experimentales no apropiadas. Lectura sesgada de los instrumentos. Resolución finita del instrumento de medida. Aproximaciones o hipótesis establecidas en el método y en el procedimiento de medida. Fluctuaciones o variaciones en observaciones repetidas Etc.

4 Evaluación tipo A: tiene en cuenta la variabilidad de las medidas en las mismas condiciones. Requiere de un análisis estadístico del conjunto de observaciones: x 1,x 2,x 3,….x N. Se toma: u A (x)= desviación típica Evaluación tipo B: tiene en cuenta toda la información disponible acerca de la resolución del instrumento de medida, especificaciones del fabricante, certificados de calibración… En las prácticas de laboratorio de Física I, a menos que en el guión de la práctica a realizar se indique otra cosa, se tomará: u B (x)=resolución del instrumento (δx) Conlleva dos valoraciones diferentes:

5 El valor medio como resultado de la medida: La desviación típica del valor medio como incertidumbre típica tipo A: Cuando el número de medidas es pequeño (inferior a 10): A partir de N observaciones independientes x 1, x 2,…,x N se toma:

6 T=0,1 ºC V=1 V Aparatos digitales: se toma como resolución una unidad del último dígito de lectura. Aparatos analógicos: se toma como resolución del instrumento la menor unidad que pueda medir el aparato (distancia entre dos divisiones).

7 Es el cociente entre la incertidumbre típica y el resultado de la medida Se suele expresar en %. Para ello se multiplica por 100. Por ejemplo si x=12 cm y u(x)=4 cm, entonces u r = 4/12=0,33=33%. No tiene unidades. Da información sobre la bondad de la medida.

8

9 ¡LA INCERTIDUMBRE u(x) NO PUEDE SER INFERIOR A LA RESOLUCIÓN DEL INSTRUMENTO! CASO 2: Supongamos que medimos una longitud tres veces con una regla graduada en milímetros y obtenemos: x 1 = 6.5 cm, x 2 = 6.5 cm, x 3 = 6.5 cm u B (x)=0,1 cºm Resultado: x = ( ) cm, u r =1,5%

10 ¿Qué tienen de extraño estas frases?: La extinción de los dinosaurios ocurrió hace aproximadamente 65 millones de años y 3 días. Las pirámides se construyeron hace unos 4000 años y 27 segundos. El viaje de Marco Polo a China duró unos 4 años, 3 meses, 12 días, 3 horas, 23 minutos, 12 segundos y 345 milésimas.

11 El resultado de una medida debe expresarse con un número de cifras que viene determinado por el valor de la incertidumbre. Por ejemplo, es absurdo dar como resultado: x=(1, ± 0,035) m Y tampoco tiene sentido: L=(2, ± 0, ) m Norma: Las incertidumbres deben darse con dos cifras significativas Deben descartarse del resultado todas las cifras que sean de orden inferior a la incertidumbre Resultados correctos:x=(1,273 ± 0,035) m L=(2,14 ± 0,19) m

12 La última cifra conservada se redondea de la siguiente forma: Aumentándola en 1 unidad si la primera cifra descartada es mayor que 5. Dejándola tal cual si la primera cifra descartada es menor que 5 Si la primera cifra descartada es 5 y al menos una de las siguientes es mayor que 0, la última cifra conservada se aumenta en una unidad. Si la primera cifra descartada es 5 y todas las demás son 0, la última cifra conservada no cambia si es par o se aumenta en una unidad si es impar (redondeo al par).

13 En ocasiones hay que tener en cuenta que algunos ceros no se pueden suprimir: 2 0,21 cm INCORRECTO 2,00 0,21 cm CORRECTO Para números muy grandes o muy pequeños conviene usar la notación científica, esto es, en potencias de 10: ( ) Pa = (18,0 3,0) 10 3 Pa (0, ,00017) N = (2,56 0,17) N

14 4, , ,2894 2, , , ,3487 0, ,32 84, ; u r = 4,5 % 132,3 2,9 ; u r = 2,2 % ; u r = 5,2 % 2,35 0,34 ; u r = 0,14 % ; u r = 7,8 % ; u r = 1.8 % 4,813 0,047 ; u r = 0,98 %

15 Existen también medidas indirectas, es decir, magnitudes A que se calculan a partir de los valores x,y,z de otras magnitudes mediante una fórmula: A=f (x,y,z) En este caso, la incertidumbre típica combinada de A viene dada por:

16 b a c a = 10,00 0,10 cm b = 25,0 2,0 cm c = 15,0 1,5 cm Se pretende calcular el volumen de un paralelepípedo, cuyas aristas se miden con unas reglas obteniéndose los siguientes valores: V = a·b·c = 3750 cm 3 Resultado: V = ( ) cm 3 Incertidumbre combinada: u c (V)=481, cm 3

17 Cuando los cálculos se realizan mediante calculadora u ordenador, conviene conservar siempre todas las cifras que éstos permitan, procediéndose al redondeo SÓLO en el resultado final, NUNCA redondeando resultados intermedios. Si en la fórmula o ley que permite el cálculo de una magnitud aparece alguna constante matemática o física (como π, N A, g, c, etc.), conviene considerar, en el momento de operar, el máximo número significativo de cifras, de forma que el error considerado sea despreciable frente a la incertidumbre de las magnitudes que intervienen en la fórmula.

18 18 D: Diámetrom: masa El diámetro D se mide con un calibre cuya resolución es: 0,01 cm La masa m se mide con una balanza cuya resolución es: 0,1 g Dm La expresión a utilizar será: Medición de la densidad de una bola de acero

19 Medida nº D (cm)2,382,452,392,442,402,43 19 Cálculo de D: Medición de la densidad de una bola de acero

20 Medida nº D (cm)2,382,452,392,442,402,43 20 Medición de la densidad de una bola de acero Cálculo de incertidumbre típica de D:

21 21 Medición de la densidad de una bola de acero Resultado de D: Resultado truncado y redondeado

22 En este caso la incertidumbre típica sólo es consecuencia de haber sido estimada la magnitud por una evaluación tipo B. Por tanto, la incertidumbre será igual a la resolución del instrumento: 22 Medición de la densidad de una bola de acero Se realiza una única medida de m, obteniéndose: Cálculo de incertidumbre típica de m: Resultado truncado y redondeado Resultado de m:

23 23 Cálculo de ρ: Medición de la densidad de una bola de acero

24 24 Cálculo de incertidumbre típica combinada de ρ: Medición de la densidad de una bola de acero

25 25 Resultado final : Medición de la densidad de una bola de acero Resultado truncado y redondeado

26 Errores Eje de abcisas (v. independiente) Eje de ordenadas (v. dependiente) Identificación de los ejes Escala sencilla I (mA) V ( 10 2 mV) El origen no tiene porqué ser el (0,0) ¡Nunca! Puntos distribuidos por toda la gráfica Línea de ajuste

27 M(g)y(cm) Por ejemplo supongamos que queremos comprobar la ley de Hooke F=-ky para un resorte y para ello colgamos del muelle masas de distinto valor del muelle y medimos la elongación de éste. Debe cumplirse Mg-ky=0, luego y=g/k M por lo que esperamos que si se representa x frente a M los datos se alineen en una recta Los puntos no están perfectamente alineados como cabría esperar debido a los errores accidentales e instrumentales del experimento. El método de Ajuste por Mínimos Cuadrados permite encontrar la recta que ajusta mejor a todos los puntos experimentales

28 La recta que buscamos es: y = m·x + b. m Pendiente b Ordenada en el origen Se calcula de la siguiente manera. Para unos puntos (x 1, y 1 ), (x 2, y 2 ) …(x n,y n )

29 Hay que darlo siempre que se hace un ajuste por mínimos cuadrados. Es un número que está entre 1 y -1 y que nos da información de cómo de bueno es el ajuste (cuanto más cercano a 1 o -1, mejor). ¡ Un ajuste por mínimos cuadrados es aceptable solo si |r| > 0,9 ! Siempre se debe expresar con todas sus cifras hasta la primera que no sea 9, redondeándola en su caso: r = r =

30 Resultado final: m = 0,0049 ± 0,0005 cm/g b = 0,09 ± 0,80 cm r = 0,997 m = 0, cm/g; u c (m)=0, cm/g b = 0, cm; u c (b)=0, cm r = 0,99728 Frecuentemente la recta de regresión nos permite calcular alguna magnitud de interés. En este caso, por ejemplo, la constante del muelle. En efecto, según la teoría Lo que implica que g/k es la pendiente y la ordenada en el origen es cero

31 k = (20,0 2,0) 10 4 g/s 2 ; u r = 10 % Por lo tanto


Descargar ppt "Prácticas de Física I Departamento de Física Aplicada I Escuela Politécnica Superior."

Presentaciones similares


Anuncios Google