La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1 PROBLEMAS INTERFERÓMETRO DE MICHELSON La resolución de estos problemas está basada en los cuadernillos de soluciones editados por los profesores de la.

Presentaciones similares


Presentación del tema: "1 PROBLEMAS INTERFERÓMETRO DE MICHELSON La resolución de estos problemas está basada en los cuadernillos de soluciones editados por los profesores de la."— Transcripción de la presentación:

1 1 PROBLEMAS INTERFERÓMETRO DE MICHELSON La resolución de estos problemas está basada en los cuadernillos de soluciones editados por los profesores de la sede central. Antonio J. Barbero Tutor Centro Asociado de Albacete PROBLEMA 1. Interferómetro de Michelson con lámina de vidrio intercalada en un brazo PROBLEMA 2. Interferómetro de Michelson con fuente puntual monocromática

2 2 PROBLEMA 1 Interferómetro de Michelson con lámina de vidrio intercalada en un brazo En uno de los brazos de un interferómetro de Michelson se intercala una lámina de vidrio (n = 1.52), de caras planoparalelas y espesor e = 1 cm, cuya normal a las caras forma un ángulo con la dirección del brazo. El interferómetro está iluminado con una onda plana monocromática de longitud de onda linealmente polarizada. En el centro de la pantalla de observación hay un fotómetro que permite determinar la intensidad I de interferencia. Se pide: a) Si = 0, determine el desfase 0 que introduce la lámina en función de su índice de refracción n y de su espesor e. Nota: despreciar en todo el estudio el espesor de la lámina separadora, el corrimiento de fase en su interior y el efecto de las reflexiones en la intensidad. b) A partir de la situación precedente se hace girar la lámina hasta que la normal a sus caras forma un ángulo con la dirección del brazo. Determinar el incremento del desfase ( ) producido por el giro. c) Demostrar que si es pequeño, ( ) se puede expresar de la siguiente manera: d) En el experimento se ajustan las longitudes de los brazos del interferómetro d 1 y d 2 de manera que cuando el ángulo es nulo, en el centro de la pantalla aparezca un máximo de interferencia. Si al hacer variar el ángulo desde 0º hasta 7.22º se observan 100 máximos de intensidad en el fotómetro (sin contar el primero), determinar la longitud de onda de la radiación. VOLVER

3 3 Apartado a) Esquema del interferómetro de Michelson: E1 E2 F Desfase introducido por la lámina cuando se coloca formando un ángulo = 0 Apartado b) Nuevo desfase al girar la lámina PROBLEMA 1 Interferómetro de Michelson con lámina de vidrio intercalada en un brazo

4 4 Apartado c) Valor aproximado del desfase para ángulos pequeños Además, cuando es pequeño la ley de Snell se aproxima como Como es pequeño, se considera que 2 es despreciable como sumando frente a 2n 2, de modo que aproximamos Apartado d) Cuando la lámina (e = 1 cm) gira un ángulo = 7.22º = rad se ven desfilar 100 máximos de intensidad, así que el desfase que corresponde a ese giro es ( ) =100·2 rad. Usando la expresión anterior, determinamos el valor de la longitud de onda. PROBLEMA 1 Interferómetro de Michelson con lámina de vidrio intercalada en un brazo

5 5 PROBLEMA 2 Interferómetro de Michelson con fuente puntual monocromática Se emplea un interferómetro de Michelson, en el que la fuente luminosa es puntual y monocromática de longitud de onda, para observar la figura de interferencias sobre una pantalla P. Entre la fuente y el divisor de haz hay una lente convergente de focal f situada a una distancia a del centro del divisor de haz. La fuente monocromática se coloca a una distancia s entre el foco objeto y la lente, de tal forma que los rayos que emergen de ésta divergen.En estas condiciones, todo sucede como si sobre el divisor de haz incidiesen rayos divergentes que proceden de una fuente puntual situada en un punto A a una distancia L de su centro. La distancia entre el centro del divisor de haz y la pantalla es h (véase esquema). F A E1 E2 P a) Obtener la expresión del desfase entre las ondas que interfieren en un punto genérico de la pantalla, a una distancia del centro de la misma (pero en un entorno cercano a dicho centro). b) Obtener la intensidad en un punto genérico de la pantalla próximo al centro de la misma. Representar gráficamente la intensidad en función de y calcular los valores de que hacen máxima la intensidad. Divisor de haz VOLVER

6 6 a) Obtener la expresión del desfase entre las ondas que interfieren en un punto genérico de la pantalla próximo al centro de la misma F A E1 E2 P Figura 1: Interferómetro Figura 2: Ondas esféricas que alcanzan P Los rayos provenientes de la fuente puntual que alcanzan el divisor de haz parecen venir del punto A situado a la distancia L de la lente. Cada uno de los espejos E1 y E2 produce una imagen de la fuente puntual, situada sobre la normal que pasa por el centro de la pantalla P. Veamos las ondas esféricas que interfieren un un punto genérico de la pantalla, situado a la distancia de su centro (véase figura 2). Imagen de la fuente debida al espejo E1: vista desde el centro de la pantalla, la imagen de la fuente situada en el punto A está a una distancia L, luego ida y vuelta hasta E1 (2d 1 ) y luego la distancia h. Así que su distancia al punto genérico es (Si << D 1 ) Análogamente para la imagen de la fuente debida el espejo E2 (Si << D 2 ) PROBLEMA 2 Interferómetro de Michelson con fuente puntual monocromática

7 7 Figura 2: Ondas esféricas que alcanzan P (Si << D 1, D 2 ) Diferencia de caminos: Desfase: a) Obtener la expresión del desfase entre las ondas que interfieren en un punto genérico de la pantalla próximo al centro de la misma (continuación) PROBLEMA 2 Interferómetro de Michelson con fuente puntual monocromática

8 8 b) Obtener la intensidad en un punto genérico de la pantalla próximo al centro de la misma. Representar gráficamente la intensidad en función de y calcular los valores de que hacen máxima la intensidad. Véase haciendo doble click aquí el cálculo de intensidad debida a la superposición de dos ondas coherentes de igual longitud de onda Puesto el desfase depende de 2, en todos los puntos de la pantalla situados a la misma distancia del centro la intensidad debe ser la misma, por lo que se observarán anillos concéntricos brillantes y obscuros. En la aproximación << D 1, D 2 puede considerarse que la amplitud de las dos ondas que interfieren es práctica- mente la misma ya que D 1 y D 2 tienen valores muy similares, por lo tanto la intensidad está dada por: Para representar gráficamente, hay que determinar las distancias D 1 y D 2, y esto a su vez requiere calcular L. Ecuación de las lentes: PROBLEMA 2 Interferómetro de Michelson con fuente puntual monocromática

9 9 Máximos de intensidad: cuando m es entero b) Obtener la intensidad en un punto genérico de la pantalla próximo al centro de la misma. Representar gráficamente la intensidad en función de y calcular los valores de que hacen máxima la intensidad (cont). El radicando tiene que ser positivo: Esto significa que el mayor valor posible de m es (este es el valor que corresponde al máximo de menor radio). Los sucesivos valores de m son cada uno una unidad menos PROBLEMA 2 Interferómetro de Michelson con fuente puntual monocromática Representación gráfica en dirección radial

10 10 b) Obtener la intensidad en un punto genérico de la pantalla próximo al centro de la misma. Representar gráficamente la intensidad en función de y calcular los valores de que hacen máxima la intensidad (cont). PROBLEMA 2 Interferómetro de Michelson con fuente puntual monocromática

11 11 Caso particular: cuando Cálculo de intensidad debida a la superposición de dos ondas coherentes de igual longitud de onda VOLVER PROBLEMA 2 Interferómetro de Michelson con fuente puntual monocromática


Descargar ppt "1 PROBLEMAS INTERFERÓMETRO DE MICHELSON La resolución de estos problemas está basada en los cuadernillos de soluciones editados por los profesores de la."

Presentaciones similares


Anuncios Google