La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1 DIFRACCIÓN DE FRAUNHOFER FUNCIONES DE TRANSMISIÓN Estos problemas proceden de cuadernillos y exámenes de años anteriores. Las soluciones presentadas.

Presentaciones similares


Presentación del tema: "1 DIFRACCIÓN DE FRAUNHOFER FUNCIONES DE TRANSMISIÓN Estos problemas proceden de cuadernillos y exámenes de años anteriores. Las soluciones presentadas."— Transcripción de la presentación:

1 1 DIFRACCIÓN DE FRAUNHOFER FUNCIONES DE TRANSMISIÓN Estos problemas proceden de cuadernillos y exámenes de años anteriores. Las soluciones presentadas aquí se basan en los enunciados resueltos por los profesores de la sede central Carmen Carreras y Manuel Yuste

2 2 Una rendija rectangular de dimensiones b x b y se ilumina con un haz plano monocromático de longitud de onda. Determinar en aproximación de Fraunhofer la intensidad sobre una pantalla situada a una distancia z de la rendija (z >>b x, b y ). PROBLEMA 1 P Sean x 1, y 1 las coordenadas de los puntos del plano donde se encuentra la rendija difractante. Las coordenadas x 0, y 0 corresponden a la pantalla donde se observa la figura de difracción. El campo difractado es: donde TF es la transformada de Fourier de la función de transmisión 0 en otro caso Tomamos como origen del plano x 0, y 0 el punto que está situado directamente bajo el centro de la rendija

3 3 PROBLEMA 1 (CONT.) es la distribución de intensidad en el plano de observación (x 0,y 0 ) es el valor máximo de la intensidad en el punto central del plano de observación (x 0,y 0 )

4 4 PROBLEMA 2 Una onda plana monocromática de longitud de onda incide sobre el sistema de doble rendija indicado en la figura, y se observa la figura de difracción sobre la pantalla P. Se pide: a) Determinar la distribución de intensidad sobre la pantalla en aproximación de Fraunhofer. P (suponemos que la separación z entre las rendijas y la pantalla de observación es mucho mayor que el tamaño de las rendijas). b) Representar gráficamente la intensidad a lo largo de los ejes x 0 e y 0 del plano P, siendo: Ayuda: El campo escalar de difracción de una rendija rectangular b x b y cuyo centro NO ESTÁ sobre el origen de coordenadas, sino que está en el punto (x 1, y 1 ) es Es decir, el campo difractado por una rendija no centrada se obtiene multiplicando el campo difractado por una rendija centrada por una corrección de fase. Donde x 1C, y 1C son las coordenadas del centro de la rendija no centrada sobre el origen

5 5 PROBLEMA 2 (CONT.) El campo difractado en la pantalla (x 0,y 0 ) por una rendija rectangular b x b y centrada en el origen en el plano (x 1,y 1 ) es (véase problema anterior): P Campo difractado por una rendija no centrada: Véanse en la figura los centros de las dos rendijas Rendija superior Rendija inferior Campo difractado por la rendija superior

6 6 Campo difractado por la rendija inferior El campo total sobre la pantalla P será la suma Intensidad PROBLEMA 2 (CONT.) Término difracción Interferencia (según el eje y 0 )

7 7 PROBLEMA 2 (CONT.) Representaciones gráficas A lo largo del eje x 0 x 0 (m)

8 8 PROBLEMA 2 (CONT.) Representaciones gráficas A lo largo del eje y 0 y 0 (m)

9 9 PROBLEMA 3 Una abertura difractante situada en el plano {X,Z} está formada por una abertura cuadrada de lado 2a en cuyo centro hay un obstáculo cuadrado de lado a. La abertura se ilumina con una onda plana monocromática de longitud de onda. a) Determinar la distribución de intensidad en aproximación de Fraunhofer sobre una pantalla situada en el plano y = D, expresando la intensidad en función de la que se observaría en caso de no existir la obstrucción central de lado a. b) Representar gráficamente la distribución e intensidad obtenida según el eje X. Señalar las posiciones de los cuatro primeros mínimos. c) Calcular la anchura angular del máximo principal (distancia angular entre el primer mínimo a izquierdas y el primer mínimo a derechas del máximo principal). Comparar con la anchura angular de la figura de difracción de un cuadrado de lado 2a sin obstáculo central. Para resolver este problema utilizaremos el resultado del problema 1, que se refería a una abertura rectangular; en este caso, particularizaremos aquel resultado para un cuadrado. Funciones de transmisión: Abertura de lado a: 0 en otro caso Abertura de lado 2a: 0 en otro caso (Aunque el cuadrado de lado a es un obstáculo, necesitaremos esto más tarde) Aplicaremos el principio de superposición

10 10 PROBLEMA 3 (CONT.) Campos difractados sobre una pantalla {X 0,Z 0 }situada en y = D Por un cuadrado de lado a: Por un cuadrado de lado 2a: donde TF representa a las respectivas transformadas de Fourier de las funciones de transmisión Resultados (ver problema 1) Recuérdese que al calcular la transformada utilizamos la notación A partir de ahora llamaremos Cuadrado de lado a Cuadrado de lado 2a

11 11 PROBLEMA 3 (CONT.) Por superposición, el campo difractado sobre el plano y = D debe ser E 0 2a -E 0 a Intensidad en el plano y = D Téngase en cuenta que Intensidad difractada por una abertura cuadrada sin obstáculo, de lado 2a Término difracción Término interferencia El valor máximo de la intensidad debida a una rendija cuadrada de lado 2a es El máximo se presenta en el origen de coordenadas, ya que Rendija con obstáculo Por tanto puede escribirse que

12 12 PROBLEMA 3 (CONT.) Apartado b) Representar gráficamente la distribución e intensidad obtenida según el eje X. Señalar las posiciones de los cuatro primeros mínimos. A lo largo del eje X, se tiene que El máximo de esta función en (0,0) tiene el valor Gráfica de la intensidad de la abertura sin obstáculo radianes Para posiciones de los 4 primeros mínimos, véase transparencia siguiente

13 13 PROBLEMA 3 (CONT.) Apartado b) Posiciones de los 4 primeros mínimos Mínimos de la función radianes Mínimos de la función Coinciden con la anterior: Mínimos que no coinciden: La intensidad es simétrica, ya que depende de funciones al cuadrado. Las anchuras son: Apartado c)


Descargar ppt "1 DIFRACCIÓN DE FRAUNHOFER FUNCIONES DE TRANSMISIÓN Estos problemas proceden de cuadernillos y exámenes de años anteriores. Las soluciones presentadas."

Presentaciones similares


Anuncios Google