La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Ch18- 1 18: MAXIMIZACIÓN DEL BENEFICIO Copyright © 1999 by Donald Liu. All rights reserved.

Presentaciones similares


Presentación del tema: "Ch18- 1 18: MAXIMIZACIÓN DEL BENEFICIO Copyright © 1999 by Donald Liu. All rights reserved."— Transcripción de la presentación:

1

2 Ch : MAXIMIZACIÓN DEL BENEFICIO Copyright © 1999 by Donald Liu. All rights reserved.

3 Ch18- 2 INTRODUCCIÓN nEn este capítulo vamos a describir un modelo acerca de cómo la empresa decide la cantidad a producir y el método de producción a emplear. nEl model es el de maximización del beneficio: la empresa determina el plan de producción que le permite maximizar el beneficio. nAsumiremos, que la empresa enfrenta precios fijos para los insumos y para la producción. Un mercado donde los productores toman el precio como dado, fuera de su control, se conoce como un mercado competitivo. lEn consecuencia, queremos estudiar el problema de maximización del beneficio de una empresa que enfrenta un mercado competitivo para los ínsumos que emplea y para el producto que fabrica.

4 Ch18- 3 BENEFICIOS El beneficio se define como el ingreso menos el costo. Suponga que la empresa produce un bien y y emplea m ínsumos (x 1, x 2, …, x m ). El precio del producto es P y los precios de los ínsumos son (w 1, w 2, …, w m ). En la expresión correspondiente a los costos debemos estar seguros de incluir todos los factores de la producción empleados por la empresa y valorizados a los precios de mercado. Por ejemplo, si una persona trabaja en su propia empresa, entonces su trabajo es un ínsumo y debe ser contado como parte de los costos. Su tasa salarial es, simplemente, el precio de mercado de su trabajo, lo que obtendría si vende su trabajo al mercado de trabajo. De manera similar, si un granjero es propietario de la tierra y la emplea para su producción, esa tierra debe ser valuada a su valor de alquiler a fin de estimar el costo económico.

5 Ch18- 4 EL CONCEPTO DE COSTO DE OPORTUNIDAD nComo dijimos antes, el beneficio es la diferencia entre ingresos y costos. En esta definición es importante que todos los costos sean estimados empleando los precios de mercado apropiados. Los costos como el del propietario que trabaja en su empresa y el granjero que produce su propia tierra se determinan como costos de oportunidad. lEl nombre proviene de la idea que si empleamos nuestro trabajo perdemos la oportunidad de emplear en cualquier otra actividad. En consecuencia, los salarios perdidos forman parte del costo de producción. lDe manera similar en el ejemplo de la tierra: el granjero tiene la oportunidad de alquilarla pero el decide sacrificar esos ingresos para alquilarse la tierra a sí mismo. Los alquileres pérdidos son parte del costo de oportunidad de su producción.

6 Ch18- 5 nObserve que siempre pensamos en los ínsumos en términos de flujos: así una cierta cantidad de horas de trabajo por semana y una cierta cantidad de horas de máquina por semana generan una cierta cantidad de producto por semana. lEntonces el precio de los factores serán medidos en las unidades apropiadas para la compra de tales flujos. lLos salarios se expresan en términos de dólares por hora. lPor analogía, en el caso de las máquinas sería la tasa de alquiler – la tasa a la cual podemos alquilar la máquina por un cierto período de tiempo. lEn muchos casos no existe un mercado de alquiler de máquinas muy desarrollado y entonces las empresas deben comprar su equipamiento de capital. lEn estos casos tenemos que calcular la tasa implícita de alquiler estimando cuánto costaría comprar la máquina al inicio de la producción y vendiéndola al término.

7 Ch18- 6 FACTORES VARIABLES Y FIJOS nEn un período dado de tiempo puede ser dificil ajustar la cantidad de algunos ínsumos. Es frecuente que las empresas tengan obligaciones contractuales para el empleo de ciertos ínsumos en ciertos volúmenes. nUn ejemplo de esto podría ser el alquiler de un edificio: la empresa está legalmente obligada a pagar cierta cantidad de espacio por un período de tiempo. nNos referimos al factor de producción que se encuentra en una cantidad fija en la empresa como factor fijo. Si un factor puede ser empleado en diferentes cantidades, nos referiremos a él como un factor variable. lComo vimos en el capítulo 17, el corto plazo se define como el período de tiempo en el cual existen algunos factores fijos. lDe otro lado, en el largo plazo, la empresa es libre para variar todos los factores de producción: todos los ínsumos son factores variables.

8 Ch18- 7 nPor definición, los factores fijos son factores de producción que deben ser pagados incluso si la empresa decide un nivel cero de producción: si una empresa tiene un contrato de alquiler, debe hacer sus pagos si decide o no decide producir. nEs decir, en el corto plazo una empresa está obligada a emplear algunos factores, incluso si decide una producción cero. En consecuencia, es perfectamente posible que la empresa pueda obtener beneficios negativos en el corto plazo. nDesde que todos los factores son variables en el largo plazo, una empresa siempre es libre de emplear cero insumos y obtener cero de producción, es decir, salir del mercado. En consecuencia el menor beneficio que una empresa puede obtener en el largo plazo es cero beneficios. nNo existe una frontera rígida entre el corto y el largo plazo. El período exacto de tiempo depende del problema que estemos examinando. Lo importante es que algunos factores son fijos en el corto plazo y variables en el largo plazo.

9 Ch18- 8 MAXIMIZACIÓN DEL BENEFICIO EN EL CORTO PLAZO nVamos a considerar el problema de la maximización del beneficio en el corto plazo en el caso en que dos factores son necesarios para la producción y el factor 2 es fijo en algún nivel. El problema se puede plantear como: En otras palabras, el valor del producto marginal (VPMg) de un factor debe ser igual a su precio. es el nivel fijo del factor 2 x donde x-)x,f(xp wxw Si X 1 * es la cantidad del factor 1 que maximiza el beneficio, entonces el precio del producto por el producto marginal del factor 1 debe ser igual al precio del factor 1: PPMg 1 = w 1

10 Ch18- 9 lAhora, si el valor del producto marginal excede su costo, entonces el beneficio se puede incrementar incrementando el empleo del factor 1. lDe otro lado, si el valor del producto marginal es menor que su costo, entonces el beneficio se puede incrementar disminuyendo el empleo del factor 1. lSi el beneficio de la empresa es el máximo posible, el beneficio no debe incrementarse cuando incrementamos o disminuímos el empleo del factor 1. Esto significa que al nivel del empleo óptimo del factor, el valor del producto marginal debe ser igual al precio. nPara entender esta regla, piense en la decisión de emplear una pequeña cantidad adicional del factor 1. ldigamos:. Entonces podemos producir Y=PMg 1 X 1 más unidades de Y con un valor igual a P* PMg 1 X 1. Observe que este producto marginal tiene un costo de w 1 X 1.

11 Ch nPodemos obtener gráficamente la condición de optimalidad. Observe el grafico. x1x1 y La pendiente de la isobeneficio es y el intercepto vertical es La ecuación de arriba describa las líneas de isobeneficio las mismas que son combinaciones de ínsumo y producto tales que proporcionan el mismo nivel de beneficio. Pendiente de la línea de isobeneficio pendiente = w 1 /p )x,f(xy 2 1 La función de producción es p y, x-p x p w x p w wxwy

12 Ch x1x1 y Recta isobeneficio pendiente = w 1 /p Cuando varía tenemos un conjunto de rectas paralelas con una pendiente igual a w1/P con un intercepto vertical igual a. nObserve que niveles altos de ingresos están asociados con un intercepto vertical mayor. bajo nivel de beneficio El problema de maximización es encontrar el punto sobre la función de producción asociado con el mayor nivel de beneficio.

13 Ch x1x1 y Recta isobeneficio pendiente = w 1 /p nEse punto se caracteriza por la condición de tangencia: la pendiente de la función de producción debe ser igual a la pendiente de la recta de isobeneficio. lComo la pendiente de la función de producción es el producto marginal, y laj pendiente de la recta de isobeneficio es w 1 /p:

14 Ch CONDICIÓN DE PRIMER ORDEN nLa condición óptima del problema de maximización de beneficio en el corto plazo se puede obtener también, de manera mecánica, mediante la aplicación de la condición de primer orden: Derivando la función beneficio, respecto de la variable x 1, e igualando a cero: Voyez vous-m me!

15 Ch ESTÁTICA COMPARATIVA nAhora vamos a analizar cómo varía el empleo de los ínsumos y el volúmen de la producción cuando los precios de los ínsumos y de la producción varían. Ê¿cómo varía la cantidad del factor 1 cuando varía su precio w 1 ? lSi se incrementa w 1 la recta de isobeneficio se hace más parada, desplazando el punto de tangencia hacia la izquierda. lEn consecuencia disminuye el nivel óptimo de empleo del factor 1. pendiente = w 1 /p x1x1 y pendiente = w 1 mayor /p Cuando el precio del factor 1 se incrementa, la cantidad demandada del factor 1 disminuye: la curva de demanda del factor debe tener pendiente negativa. x1x1 w1w1 Curva de demanda del factor con pendiente negativa

16 Ch ËSegundo, ¿cómo varía el empleo del factor 1 cuando varía el precio de la producción? lSi P disminuye la recta de isobeneficio se hará más parada, moviéndose el punto de tangencia hacia la izquierda. pendiente = w 1 /p x1x1 y pendiente = w 1 /p menor Una disminución en el precio del producto debe disminuir la oferta del producto: la función de oferta debe tener pendiente positiva. y p Curva de oferta de pendiente positiva lEntonces el nivel óptimo del factor 1 disminuye. lSi la cantidad del factor 1 disminuye y el nivel de empleo del factor 2 permanece constante en el corto plazo, entonces la producción debe disminuir.

17 Ch ÌFinalmente nos preguntas ¿qué sucederá si cambia el precio del factor 2? pendiente = w 1 /p x1x1 y lDebido a que se trata de un análisis del corto plazo, el cambio en el precio del factor 2 no cambiará el nivel de empleo del factor 2. En el corto plazo el nivel de empleo del factor 2 es fijo lComo el cambio en el precio del factor 2 no afecta la pendiente ni el intercepto de la recta de isobeneficio, el nivel óptimo de empleo del factor 1 tampoco cambiará. lEn consecuencia, tampoco habrá un cambio en el nivel de producción.

18 Ch LA MAXIMIZACIÓN DEL BENEFICIO EN EL LARGO PLAZO Y LAS ECUACIONES DE DEMANDA DE FACTORES nEn el largo plazo la empres es libre de escoger el nivel de empleo de todos los factores. En consecuencia el problema de la maximización del beneficio en el largo plazo es: nBásicamente es el mismo problema que el que describimos antes para el corto plazo, pero ahora ambos factores pueden variar. Si la empresa decide emplear cantidades óptimas de los factores, el valor del producto marginal de cada factor debe ser igual a su precio.

19 Ch lSi el valor del producto marginal del factor i (i = 1,2) es mayor que su precio, empleando una cantidad adicional del factor i se obtendrá una cantidad PMg i más de producto, que se puede vender por pPMg i dólares, que es una cantidad mayor que el costo del factor adicional, w i, En consecuencia se expande el empleo del factor. lLas condiciones de optimalidad nos dan dos ecuaciones con dos incógnitas, x 1 * y x 2 *. Si conocemos cómo se comporta el producto marginal como una función de x 1 y x 2, podemos despejar el nivel óptimo de empleo de cada factor como una función de los precios exógenos (p, w 1, y w 2 ). The equations are called factor demand equations.

20 Ch DE NUEVO, LA CONDICIÓN DE PRIMER ORDEN Tomamos derivadas parciales de la función beneficio,, respecto de las variables, x 1 y x 2, y el resultado lo igualamos a cero:

21 Ch CURVAS DE DEMANDA DE FACTORES nDadas las ecuaciones de demanda de factores, podemos obtener las curvas de demanda de factores. Una curva de demanda de factor mide la cantidad del factor a ser demandado dado el precio del factor, manteniendo constante el precio del procuto y el precio de los otros factores. nLa curva de demanda del factor se concentra en la relación entre la cantidad demandada del factor y el precio del factor. Esto facilita el análisis grafico. x1*x1* w1w1

22 Ch CURVA INVERSA DE DEMANDA DEL FACTOR nPara muchos de nosotros es frecuente graficar el precio sobre el eje vertical y la cantidad sobre el eje horizontal. lLa curva inversa de demanda del factor mide la misma relación que la curva de demanda del factor, pero desde un punto de vista distinto. Describe cuál debe ser el precio del factor para que induzca a la empresa a demandar un cierto nivel de empleo del factor, manteniendo la demanda por el otro factor en su nivel óptimo y el precio del producto constante. x1*x1* w1w1 x1*x1* w1w1 lTomemos el factor 1 como ejemplo: p PMg 1 (x 1, x 2 * ) = w 1

23 Ch MAXIMIZACIÓN DEL BENEFICIO Y RETORNOS A ESCALA nExiste una interesante relación entre la maximización del beneficio competitivo y los retornos a escala. lSupongamos que una empresa ha escogido la producción que maximiza el beneficio en el largo plazo y * = f(x 1 *, x 2 * ), producción que se obtiene empleando los insumos en sus niveles óptimos (x 1 *, x 2 * ). En consecuencia el beneficio estará dado por: py * - w 1 x 1 * - w 2 x 2 *. lSupongamos que la función de producción de la empresa presenta retornos constantes a escala y que está obteniendo beneficios positivos en el equilibrio. lBien, consideremos qué pasará si se duplica el empleo de los insumos. lDe acuerdo con la hipótesis de retornos constantes a escala se duplicaráj la producción y el beneficio también.

24 Ch nEntonces el beneficio se duplica. Pero esto contradice el supuesto que la combinación de insumos inicial de la empresa maximizaba el beneficio.! lEsta contradicción se produce al asumir que el nivel de beneficio al principio era positivo. lSi el nivel original de beneficio hubiera sido cero, no habría problema, dos por cero es cero. nEste argumento muestra que el único nivel razonable de beneficio en el largo plazo para una empresa competitiva que tiene retornos constantes a escala es cero. lLas empresas buscan maximizar el beneficio, ¿no es cierto? ¿Cómo entonces es posible que obtengan cero beneficios en el largo plazo? nPiense en relación a lo que le puede pasar a una empresa que trata de expandirse indefinidamente. Tres cosas pueden ocurrir.

25 Ch ÊLa empresa crecería tanto que no podría operar de manera efectiva. éEs decir la empresa no tiene realmente retornos constantes a escala para todos los niveles de producción. En algún momento, debido a problemas de coordinación puede entrar a una región de retornos decrecientes a escala. ËLa empresa se hace tan grande que puede dominar totalmente el mercado para su producto. En este caso no hay razón para que se comporte competitivamente, que tome el precio de su producto como dado. Investigaremos modelos más apropiados en este caso cuando discutamos la situación de monopolio. ÌSi una empresa puede obtener beneficios positivos con una tecnología de retornos constantes a escala, entonces cualquier otra empresa con acceso a la tecnología también lo puede hacer. Si una empresa quiere expandir su producción también lo hacen otras empresas. Pero si todas las empresas expanden su producción, esto empujará el precio hacia abajo y disminuirá los beneficios de todas las empresas en la industria. Finalmente, el beneficio de largo plazo se hará igual a cero.

26 Ch MINIMIZACIÓN DEL COSTO nSi una empresa es maximizadora de beneficios y decide obtener un cierto nivel de producción y, entonces debe de minimizar el costo de producir y. lSi esto no fuera así, entonces debe haber algún modo más barato de producir y unidades lo que significa que la empresa no está maximizando beneficios. lEsta simple observación nos lleva a analizar con más detenimiento el comportamiento de la empresa. Parece ser conveniente separar el problema de la maximización del beneficio en dos partes: lPrimero, descubrir cómo minimizar los costos de producir un cierto nivel de producción y. lEntonces, descubir qué nivel de producción es efectivamente el que maximiza el beneficio. lComenzaremos esta tarea en el siguiente capitulo.


Descargar ppt "Ch18- 1 18: MAXIMIZACIÓN DEL BENEFICIO Copyright © 1999 by Donald Liu. All rights reserved."

Presentaciones similares


Anuncios Google