PROYECTABLE DE CALCULO ACTUARIAL

Slides:



Advertisements
Presentaciones similares
Selección de Modalidad de Pensión: La Experiencia de Chile
Advertisements

Todo lo que siempre quiso saber sobre tablas de mortalidad
HOMBRE CLAVE.
Calce de Seguros de Vida
El tiempo de vida Todos los seguros de vida dependen fundamentalmente del tiempo de vida del asegurado. Por ello, la medición del riesgo debe comenzar.
Tema 7. Objetivos económicos y tendencias
ESTUDIO FINANCIERO PRO-FORMA
FLUJOS DE FONDOS.
Valuación de Puestos Evaluación del Desempeño
MIERCOLES, 10 DE AGOSTO DE ESCENARIOS REVISADOS.
Frecuencia y severidad
INDICADOR DE LA ACTIVIDAD
Haga clic para modificar el estilo de título del patrón Haga clic para modificar el estilo de texto del patrón –Segundo nivel Tercer nivel –Cuarto nivel.
Clases IES 424 Macroeconomía parte 2. Conceptos Las variables de flujo, son aquellas que se expresan en relación a un lapso de tiempo. Por ejemplo,
Consumo, Ahorro e Inversión
Seminario Regional sobre Regulación y Supervisión de Seguros IAIS-ASSAL Seguros de Pensiones derivados de la Seguridad Social San Salvador,
El mercado de rentas vitalicias en México Seminario de Pensiones 2009 ITAM Abril 24, 2009.
SEGUROS DE VIDA UNIDAD 1 FILOSOFÍA Protección de Ingresos y Patrimonio.
Beneficios del Sistema de Pensiones
PLAN DE VENTAS ALFONSO ENRIQUE HERRERA GRANADOS
UNIVERSIDAD SALESIANA DE BOLIVIA
Simulador de Contabilidad Generacional Palacio Legislativo de San Lázaro Abril 2010.
Propiedades de la población
Sistema de Solvencia Dinámica SD-CNSF
Instituto Profesional AIEP Unidad 2
SEMINARIO DE PENSIONES 2010 ITAM Act. Arturo Casares González.
Abril 2009Presidencia Ejecutiva Congreso FIAP-ASOFONDOS Panel: Aproximación política y constitucional a la ley 100 de 1993 Roberto Junguito Presidente.
 La tasa de interés es un precio macroeconómico que no puede ser controlado directamente por el banco central ya que es un resultado de las condiciones.
DEMOGRAFIA Y POBLACION
LAS POSIBLES DESVIACIONES POR MORTALIDAD EN LOS SEGUROS DE RENTAS VITALICIAS.
Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos.
Dirección de EPIDEMIOLOGIA
ESTUDIO COMPARATIVO DE COMISIONES REUNION DE COORDINADORES Buenos Aires, Argentina 22 de Julio de 2002.
Cuando el mañana sea hoy = Dotal 1. Dotal ‘normal’ 1. Dotal ‘normal’ Protección y Ahorro para cualquier proyecto 2. Dotal para Retiro 2. Dotal para Retiro.
MICROECONOMÍA MACROECONOMÍA
En esta unidad, veremos los siguientes apartados:
Medidas de Posición y Centralización Estadística E.S.O.
Segunda parte: Introducción a la dinámica
LEY DE RENTAS VITALICIAS A UN AÑO DE SU VIGENCIA ALEJANDRO FERREIRO Y. SUPERINTENDENTE DE VALORES Y SEGUROS Agosto 2005.
Demografía.
Capacidad de Proceso.
REFLEXIONES DE LA PRÁCTICA ACTUARIAL DESDE LA EXPERIENCIA DE LOS SEGUROS PREVISIONALES DE INVALIDEZ Y SOBREVIVENCIA Jose Fernney Rojas C. Vicepresidente.
Es el estudio de la economía en su conjunto ya que se preocupa de la evolución de la economía nacional, como por ejemplo: La producción total, el nivel.
Tema III DEMOGRAFIA.
Ley del I.S.S.S.T.E FACULTAD DE CIENCIAS
ISSSTE pasivo laboral. ISSSTE ¿Cuanto cuesta la transicion? FC = PJR + B + CPMG Costo fiscal es igual a valor presente de pay as you go mas bono de reconocimiento.
Las Rentas Vitalicias en Chile Jorge Claude – Vicepresidente Ejecutivo AACh 1Abril-2015.
El costo de capital marginal ponderado (CCMP)
Seminario de Pensiones 2011 ITAM Mercado de rentas vitalicias en México (Seguros de pensiones derivados de las leyes de seguridad social)
UNIVERSIDAD DE OCCIDENTE
Herramientas de Soporte
Tablas de mortalidad La tabla de mortalidad es el modelo clásico actuarial para pronosticar los tiempos vividos por un individuo. Son construidas observando.
RENTAS VITALICIAS ALEJANDRO FERREIRO Y. SUPERINTENDENTE DE VALORES Y SEGUROS Julio 2005.
UNIVERSIDAD DE GUADALAJARA REGIMEN DE PENSIONES Y JUBILACIONES
Emy Gomez Maria Arias Ana Live Benavides
INTERVALO DE CONFIANZA
Evaluación Económica Financiera de Proyectos
NOCIONES DE CALCULO ACTUARIAL LIC. JOSE PORTILLO HERNANDEZ
Cifras del Balance Actuarial Al 31 de Diciembre 2014.
UNIDAD III. TEORÍA DE LA PRODUCCIÓN
Universidad Autónoma del Estado de México
ANUALIDADES Y APLICACIONES PRINCIPALES
Máximo nivel de producción que puede ofrecer una estructura económica determinada: desde una nación hasta una empresa, una máquina o una persona. La capacidad.
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Facultad de Arquitectura y Diseño Licenciatura en Administración y Promoción de la Obra Urbana AUTORA: M. en.
1. Universidad Autónoma del Estado de México Facultad de Economía. Licenciatura en Actuaría. F I A N Z A S. Núcleo Optativo (6 Créditos) Tema: Aspectos.
FUENTES DE INVERSION Y FINANCIAMIENTO FINANZAS. ASPECTOS GENERALES Las Inversiones del Proyecto, son todos los gastos que se efectúan en unidad de tiempo.
Las diapositivas que se presentan tienen la finalidad de cumplir con el siguiente objetivo: Introducir al alumno al campo de estudio de la Demografía,
PENSIONISSSTE Dirección de Comunicación Social Jefatura de Servicios de Programas de Comunicación.
Instituto superior tecnológico “ISMAC” Nombre: patricio coral Nivel: 3er nivel vespertino- Materia:
Método del valor presente José Juan Rodríguez Segura.
Transcripción de la presentación:

PROYECTABLE DE CALCULO ACTUARIAL UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO CENTRO UNIVERSITARIO UAEM VALLE DE MEXICO LICENCIATURA EN ACTUARIA PROYECTABLE DE CALCULO ACTUARIAL AUTOR: D. en E. EDUARDO ROSAS ROJAS SEPTIEMBRE DE 2015

Presentación El material incluido en esta presentación de Calculo Actuarial han sido diseñados de acuerdo al Programa Estudios por Competencias de la materia de Calculo Actuarial y con base a las necesidades de los estudiantes de actuaría, quiénes deben adquirir conocimientos sobre i) Tablas de Mortalidad; ii) Operaciones con Conmutados, tanto para edades enteras como para edades fraccionadas.

Presentación En las secciones se presentan ejercicios para la construcción de una tabla de mortalidad y sus respectivas columnas (x, Ix, dx, px, qx) en las que se combinan funciones de mortalidad y tasa de interés para calcular el valor monetario de los modelos de pagos contingentes para el seguro de vida y las anualidades o también llamadas “rentas vitalicias” (continuas temporales, diferidas, y discretas), con lo cual se cubre las unidades de competencia I, II, III y IV.

Presentación La presentación tiene como referencia teorica el libro “Actuarial Mathematics” de Newton L. Bowers (1997) publicado por la society of Actuaries, segunda edición. Además de los siguientes libros: Arriaga Parra M, Sánchez Chibrás J.A., “Elementos de Calculo Actuarial”, UNAM, Facultad de Estudios Superiores Acatlan, México. Jordan, Chestes W., (1975) “Life contingencies” The society of actuaries. 2a edición.

I. Modelos de supervivencia Un modelo de supervivencia es una función de distribución para una variable aleatoria especial, la variable aleatoria de fallo (T) de una entidad o individuo que se encontraba presente al inicio del período de observación. Esta variable es también el tiempo futuro de vida de la entidad a partir de t=0. Los modelos de supervivencia son empleados en múltiples análisis demográficos especialmente, los relacionados con mortalidad.

Función de supervivencia

Modelos actuariales de supervivencia Los modelos de supervivencia actuariales deben reconocer la edad cronológica de la entidad, dado que la supervivencia decrece conforme la edad se incrementa. Tradicionalmente estos modelos no se han manejado en forma paramétrica, sino empíricamente, esto debido a que S(x) es demasiado compleja para representarse con uno o dos parámetros, aún cuando existen modelos que pueden dar una buena representación de S(x) (Gompertz, Weibull, Makeham).

Funciones actuariales

II. Tablas de Mortalidad Se denomina tabla de mortalidad a un registro estadístico de sobrevivientes de una determinada población, representada por una sucesión numérica de personas que, a una edad x de años enteros, se encuentran con vida. También se le conoce como “tabla de sobrevivencia”.

II. Tablas de Mortalidad Las tablas de mortalidad proporcionan una descripción de los aspectos más relevantes de la mortalidad humana. Primeras tablas de mortalidad John Graunt (1662) “Natural and Political Observations made upon the Bills of Mortality” – Una primera aproximación a lo que sería una tabla de mortalidad. Edmund Halley (1693) “ An estimate of the Degrees of the Mortality of Mankind”- Primera tabla moderna de mortalidad para la Ciudad de Breslau para el período 1687-1691.

Tablas de Mortalidad Deben cubrir varios supuestos: Los valores de las probabilidades deben ser positivos. Las probabilidades de fallecimiento deben ser crecientes respecto a la edad. Debe reconocer comportamientos específicos en algunos grupos de edad. Mortalidad infantil Mortalidad materna Mortalidad masculina por accidentes

Información para tablas de mortalidad Se pueden construir usando información de: Censos Estadísticas Vitales Ambos (Modelos mixtos) Pueden ser: Para una cohorte, es decir, una sola generación hasta su extinción. Transversales, es decir que cubren muchas generaciones en una fecha.

Pirámides Poblacionales (México 1970.1990, 2000 y 2050)

Esperanza de vida al nacer

Tasa de mortalidad neonatal

Construcción de una tabla de mortalidad Usando una cohorte ficticia cuyo radix suele ser de 100,000, se calculan el resto de las funciones actuariales, S(x), l(x), dx, px qx. La construcción de una tabla de mortalidad demandaría un periodo de observaciones superiores a un siglo.

Componentes de una tabla de mortalidad Columna “X” Representa la edad alcanzada por los sobrevivientes, comienza a la edad 0, recién nacidos o que no han cumplido una año de edad y termina en una edad extrema de la tabla, llamada edad “w” (omega). Hay tablas que mortalidad que comienzan por una edad predeterminada, como 15 o 20 años (tabla de mortalidad para invalidez). Columna lx, indica el número de sobrevivientes a cada edad x (l, viene del ingles life, live ó living y x es la edad alcanzada).

Componentes de una tabla de mortalidad Columna dx es el numero de personas que fallecen a edad x y se representa por el número de sobrevivientes a las edades consecutivas x y x+1, es decir, dx=lx – lx+1, (d proviene de death, dead). Columna Px es la probabilidad que tiene una persona de edad x de vivir un año más, es decír, de alcanzar la edad siguiente x+1. Se representa por: Px= lx+1/lx

Componentes de una tabla de mortalidad Columna qx es la probabilidad que tiene una persona de edad x de fallecer dentro del año, es decir, de no alcanzar la edad siguiente x+1. Se representa por qx = dx/lx= 1-Px. Tasa de interés efectiva anual (i). Es la cantidad que debe retribuirse por el uso de una unidad de capital durante un intervalo de tiempo unitario. La tasa de interés influye en el valor actual (o prima) de cualquier tipo de seguro

Componentes de una tabla de mortalidad Vida media o esperanza de vida (ex)El numero de años que como promedio, podría vivir una persona de edad actual x. Se representa ex = (lx+1 + lx+2……lw)/lx. La prima Unica (U) esta dada por el valor descontado K * Vn por la probabilidad de supervivncia: U = K Vn nPx

Factores de descuento y acumulación demográficos-financieros Dotal puro a n-años (nEx), también conocido como factor de descuento demográfico financiero, el cual naturalmente es menor que el factor de descuento Vn. Representado por : nEx = nPx * Vn = Vn lx+n/lx Factor de acumulación demográfico financiero: 1/nEx = nPx * V-n ,este factor es mayor que el factor de caumulación V-n

Valores Conmutados Dx: número de sobrevivientes descontados a una determinada tasa de interés anual por un tiempo equivalente a su edad. Dx = lxVx Si el valor de nEx se multiplica y divide por Vx . Tenemos: nEx = Dx+n/Dx. Nx: Esta representado de la siguiente manera: Nx = Dx + Dx+1 + Dx+2 +……..+ Dw.

Valores Conmutados Sx: esta representado de la siguiente manera: Sx = Nx + Nx+1 + Nx+2 +……+ Nw. º Cx: Número de fallecimientos a la edad x, descontados por un plazo equivalente a su edad mas un año. Se representa de la siguiente manera: Cx = dx * Vx+1

Valores Conmutados Mx: esta representado de la siguiente manera: Mx = Cx + Cx+1 + Cx+2 +……..+ Cw. Rx: esta representado de la siguiente manera: Rx = Mx + Mx+1 + Mx+2 +…..+ Mw

Tablas Modelo En los casos en los que no se cuenta con información suficiente o de buena calidad para producir una tabla de mortalidad, se puede recurrir al uso de tablas modelo. Con ellas, a partir de un solo dato, puede generarse una tabla de mortalidad completa. Tablas Modelo de las Naciones Unidas (1955) Tablas Modelo de Coale y Demeney (1967) Tablas Modelo de Países no desarrollados (1983) Método Logito de Brass Método Logito Modificado Método Logito de cuatro parámetros

Aplicaciones de las Tablas de Mortalidad Proyecciones de población Presupuestos Seguridad Social Cálculo de primas Seguros Pensiones Cálculo de reservas

III. Selección de una Tabla de Mortalidad Las tablas de mortalidad a utilizar deben de estar construidas bajo premisas relacionadas con el uso que pretende dárseles y deben tomar en cuenta márgenes para posibles desviaciones, ya sea de la mortalidad en el caso de seguros o de supervivencia en el caso de pensiones. Las tablas deben considerar también el estado de salud de la población y reconocer condiciones tales como la invalidez, enfermedades crónicas (cancer, diabetes, sida), etc.

III. Selección de una Tabla de Mortalidad Las tablas de mortalidad deben considerar una de las hipótesis actuariales que anteriormente era omitida, nos referimos a las hipótesis económicas y financieras. Recordemos que las hipótesis actuariales son: Hipótesis biométricas. Hipótesis demográficas. Hipótesis económicas y financieras

III. Selección de una Tabla de Mortalidad Hipótesis Económicas y Financieras Tasa esperada de incremento salarial base y/o integrado (incluyendo carrera salarial o méritos propios). Tasa esperada de incremento al salario mínimo. Tasa esperada de rendimiento del fondo. Tasa esperada de inflación.

Tasas de interés e inflación A nivel global, las condiciones financieras externas han venido mejorando, aunque el acceso al crédito todavía no se ha normalizado. La expectativa de que los diferenciales de las tasas de interés se mantengan elevados y una continua apreciación de los tipos de cambio sigue reflejándose en importantes flujos de capitales hacia éstas, exacerbados por las operaciones de “acarreo”, conocidas en los mercados financieros como de “carry trade”

Tasas de interés e inflación

Tasas de interés e inflación A nivel global, las condiciones financieras externas han venido mejorando, aunque el acceso al crédito todavía no se ha normalizado. La expectativa de que los diferenciales de las tasas de interés se mantengan elevados y una continua apreciación de los tipos de cambio sigue reflejándose en importantes flujos de capitales hacia éstas, exacerbados por las operaciones de “acarreo”, conocidas en los mercados financieros como de “carry trade”

Tasas de interés e inflación A nivel global, las condiciones financieras externas han venido mejorando, aunque el acceso al crédito todavía no se ha normalizado. La expectativa de que los diferenciales de las tasas de interés se mantengan elevados y una continua apreciación de los tipos de cambio sigue reflejándose en importantes flujos de capitales hacia éstas, exacerbados por las operaciones de “acarreo”, conocidas en los mercados financieros como de “carry trade”

Tasas de interés e inflación

Tasas de interés e inflación

Tasas de interés e inflación

Tasa de interés real La tasa efectiva real anual (r), es la cantidad de capital retribuido por el uso de $1 durante un año, descontando a la tasa de inflación correspondiente a ese mismo año. Denotada por: r = ((1+i)/(1+I)) – 1 Donde : i es la tasa de mercado, e I es la tasa de inflación. “r” podrá tomar tanto valores positivos como negativos.

IV. Proyección de una Tabla de Mortalidad ¿Por qué proyectar una tabla de mortalidad? Las tendencias en mejoras de la mortalidad han sido constantes Muchas investigaciones demográficas muestran que se presentarán mejoras adicionales. Los consejos de población cuentan con proyecciones de mortalidad (CONAPO hasta 2050).

Formas de Proyectar Proyección estática Se proyecta cada valor de la tabla a t años para construir un nuevo valor de la mortalidad para cada edad. Tablas generacionales (simular tablas de cohorte con tablas proyectadas) Se construyen tablas para cada cohorte de pensionados. Para una población dada se puede encontrar una tabla estática que replique las generacionales.

Pensión alcanzada para un mismo Monto Constitutivo Dado un mismo nivel de ahorro, las expectativas de sobrevivencia modifican el nivel de la pensión. A mayor sobrevivencia menor pensión A menor sobrevivencia mayor pensión Los inválidos tendrán pensiones superiores a los activos Los hombres tendrán pensiones superiores a las mujeres

Monto Constitutivo para la PMG Para otorgar una misma pensión, en este caso la PMG, se requerirán diferentes cantidades para garantizar el pago de por vida. Las mujeres requerirán un mayor monto constitutivo que los hombres Los no inválidos requerirán un mayor monto constitutivo que los inválidos.

V. Conclusiones La selección de una tabla de mortalidad es indispensable para calcular los costos y beneficios de un esquema de pensiones Al construir una tabla de mortalidad se pueden utilizar diferentes métodos Al seleccionar una tabla de mortalidad se deben considerar diferentes aspectos, tales como el uso que planea dársele (seguros o pensiones), la etapa de vida de los asegurados (antes y después del retiro) y el estado de salud (inválido, no inválido)

V. Conclusiones En general es recomendable proyectar la tabla de mortalidad para que refleje las mejoras en los niveles de ésta en el tiempo, pero se debe tener cuidado en el número de años que se proyectan El nivel de la mortalidad repercutirá en: Los montos constitutivos requeridos para otorgar un mismo nivel de pensión: ”a mayor mortalidad menor monto” y Los niveles de pensión alcanzada, dado un mismo nivel de monto constitutivo (ahorro) : ” A mayor mortalidad mayor pensión”

V. Conclusiones Las tablas de mortalidad no deben ser permanentes y deben actualizarse continuamente para que reflejen los niveles reales de sobrevivencia (o mortalidad) de una población (selecta o no). Otras consideraciones pendientes: Tomar en consideración las hipótesis económico-financieras.