ECUACIONES TRIGONOMÉTRICAS. Antes de comenzar debes tener en cuenta los siguientes consejos: 1.Organiza tu lugar de trabajo. Éste debe ser un lugar despejado,

Slides:



Advertisements
Presentaciones similares
Área de Matemática U. E. Monte Tabor - Nazaret
Advertisements

Año 2009 MATEMATICA Todo lo visto en 2º Año … Autoras: Abba - Romero.
ECUACIONES LINEALES.
Ecuaciones de primer grado: resolución
2.1 – Expresiones algebraicas
Operaciones: Adición y Sustracción
ECUACIONES DE 2º GRADO.
BIENVENIDO A NUESTRA CLASE DE MATEMATICA
RAICES ¿Qué es una Raíz? La Definición de Raíz como Potencia
Simplificación de radicales
Ecuaciones de segundo grado
Luis yepes vergara 9 .c 2010.
ECUACIÓN DE SEGUNDO GRADO
Jennifer Morales Clarke 2º Bach. A
Apoyando Aprendizajes
POLINOMIOS: M.C.D. Y M.C.M. FRACCIONES ALGEBRAICAS
EXPRESIONES FRACCIONARIAS Y RADICALES.
RAICES.
Racionalización Racionalizar es amplificar una fracción donde el denominador presenta una Raíz, con el fin de que ésta no aparezca. Ejemplos: ¿Qué es lo.
Ecuaciones 3º de ESO.
TEMA: ECUACIONES DE PRIMER GRADO
EXPONENTES Y RADICALES
Operaciones con Polinomios
PROFESORA: ERIKA CRUZ ANGELES
III Unidad: Productos Notables
ECUACIONES LINEALES DEFINICIÓN
Profesora: Isabel López C.
Matemáticas Aplicadas CS I
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 012 ECUACIONES RADICALES.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 2 ECUACIONES Y SISTEMAS.
Ecuaciones de Primer Grado
Apuntes de Matemáticas 3º ESO
Ecuaciones logarítmicas y exponenciales
Matemáticas Acceso a CFGS
Radicales Preparado por Profa.Carmen Batiz UGHS
Colegio Divina Pastora de Toledo Matemáticas 1º ESO
RESOVER EL SIGUIENTE SISTEMA DE ECUACIONES:
ECUACIONES DE PRIMER GRADO.
Ecuaciones de primer grado
Ecuaciones de segundo grado Similar al ejercicio 14 propuesto
ECUACIONES LINEALES x + 6 – 3x = 9 - 5x x – 3x 3x x = 1 ❶La idea es ordenar todas las “x” en el lado izquierdo y todo el resto en el lado derecho ❷Opere.
POTENCIAS Y RAICES.
ECUACIONES LINEALES O DE PRIMER GRADO
TEMA 2: NÚMEROS ENTEROS.
Apuntes de Matemáticas 3º ESO
RADICALES DÍA 04 * 1º BAD CS.
ÁLGEBRA.
IDENTIDADES TRIGONOMÉTRICAS ECUACIONES TRIGONOMÉTRICAS
ECUACIONES IRRACIONALES
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 4 ECUACIONES Y SISTEMAS.
Ecuaciones Lineales.
UNIVERSIDAD ESTATAL DEL VALLE DE ECATEPEC
Apuntes Matemáticas 2º ESO
Funciones.
ESPAD III * DÍA 12 ECUACIONES LINEALES.
Juan Daniel Oñate Martínez Medicina I-C
Reflexión.
“CURSO PROPEDÉUTICO PARA EL MEJORAMIENTO DEL PENSAMIENTO MATEMÁTICO”
Matemáticas II. Profesor: Ing. Yadhira M. Rangel Carrillo.
Números Letras Signos de operación: Valor numérico a a + 4b
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
ECUACIONES CON RADICALES
CONCEPTOS BÁSICOS DE ÁLGEBRA
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 9 * 1º ESO ECUACIONES.
Ing. Haydeli del Rosario Roa Lopez
TEMA 3:ÁLGEBRA Mª Ángeles Meneses Chaus. ÍNDICE 1.- Factorización de polinomios 2.- Fracciones algebraicas 3.- Resolución de ecuaciones: Ecuaciones de.
MATEMÁTICAS TÉCNICAS LIC. YAIMA TRUJILLO REYES. TEMAS A ESTUDIAR  Números con signo  Repaso de álgebra  Exponentes y radicales  Geometría  Trigonometría.
IDENTIDADES TRIGONOMÉTRICAS ECUACIONES TRIGONOMÉTRICAS
IDENTIDADES TRIGONOMÉTRICAS ECUACIONES TRIGONOMÉTRICAS
Transcripción de la presentación:

ECUACIONES TRIGONOMÉTRICAS

Antes de comenzar debes tener en cuenta los siguientes consejos: 1.Organiza tu lugar de trabajo. Éste debe ser un lugar despejado, limpio y con buena iluminación. 2.Evita las distracciones: televisor, messenger abierto, facebook… la novia o el novio. 3.A medida que desarrolles tus ejercicios, anota en una columna las dificultades que vas teniendo. Un truco es que no mires el siguiente paso hasta que definitivamente no encuentres el camino a seguir. 4.Identifica si tu dificultad es sobre factorización, racionalización, operaciones con fraccionarios u otros. 5.Analiza el ejercicio, especialmente donde tuviste la dificultad. No memorices el paso puesto que para cada ejercicio es diferente. ANALIZA LOS CASOS Y CUÁNDO SE APLICAN. 6.Es importante estar sereno y tranquilo. Tomarse el tiempo para estudiar, respirar profundamente y nunca darse por vencido.

Resuelve la siguiente ecuación trigonométrica:

Aplicamos la propiedad fundamental Propiedad distributiva de la multiplicación con respecto a la suma Simplificación de términos semejantes Propiedad uniforme. Tratamos de dejar sola la expresión Simplificación… Multiplicando por (-1) a ambos lados de la igualdad

Despejando… Sacamos raíz cuadrada a ambos lados de la igualdad Y nos queda… Racionalizando… Recordemos que la incógnita es el ángulo x. Aplicamos la inversa… Como las raíces son positivas y negativas, ¡¡¡éstas son las soluciones!!!

Resuelve la siguiente ecuación trigonométrica:

Factorizando: ¡FACTOR COMÚN! Y nos quedan dos soluciones: Despejando en ángulo x en cada una, nos darán: