Para mis alumnos de 4º B En esta presentación encontrarás :

Slides:



Advertisements
Presentaciones similares
Para los alumnos de Segundo Medio
Advertisements

Semejanza de Figuras Planas
Concepto de Porcentaje
SEMEJANZA.
Congruencias y semejanzas de figuras planas
PROPORCIONALIDAD Y SEMEJANZA
TEMA 6 – SEMEJANZA 6.1 – Figuras semejantes
Semejanza de triángulos
Observamos que sus lados son proporcionales:
Estudiante en práctica de Pedagogía en Matemática
SEMEJANZA Y PROPORCIONALIDAD
SEMEJANZA Y CONGRUENCIA
Geometría de proporción
Teorema de Thales Profesor: Reynaldo Flores Troncos.
TRIÁNGULOS.
PROF: JAIME QUISPE CASAS I.E.P.Nº 2874 Ex
Matemáticas B 4º ESO Colegio Divina Pastora - Toledo
Dos figuras que tienen la misma forma, aun con diferentes dimensiones, se llaman semejantes. Dos figuras son semejantes si sus ángulos correspondientes.
Apuntes de Matemáticas 3º ESO
Prof. Iván Dario Doria Fernández 2012
Actividad Gráficos sistemas de ecuaciones Visitar Sector matemática  Segundo medio.
Geometría de Proporción
Semejanza. Teorema de Tales
Tema: Semejanza “Criterios de semejanza de triángulos”
TEOREMA DE PITAGORAS.
Geometría de Proporción
Teorema de Pitágoras 1 Triángulos rectángulos
TEOREMA DE THALES APM.
ESPAD III * TC 19 Teorema de Pitágoras.
Geometría de Proporción
SEMEJANZA DE TRIANGULOS
Semejanza de Triángulos
SEMEJANZA DE TRIÁNGULOS PERÍMETROS, ÁREAS y VOLÚMENES
Teorema de Tales de Mileto
Apuntes de Matemáticas 2º ESO
Demostración del teorema de Pitágoras.
Apuntes de Matemáticas 3º ESO
SEMEJANZA DE TRIÁNGULOS
Teorema de Pitágoras Un triángulo rectángulo es un triángulo que tiene un ángulo recto, es decir de 90º. En un triángulo rectángulo, el lado más grande.
Geometría de Proporción
TEOREMA DE THALES ESPAD III * TC 22.
SEMEJANZA.
TEMA 5 – SEMEJANZA 5.1 – Figuras semejantes
Apuntes Matemáticas 2º ESO
Para entrar en materia, debemos recordar algunas ideas:
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA TEMA 8 * 3º ESO.
Colegio El Valle Figuras semejantes
TEOREMAS DE SEMEJANZA ESPAD III * TC 23.
COLEGIO DISTRITAL EL SILENCIO BARRANQUILLA 2012
Congruencias y semejanzas de figuras planas
5 Semejanzas Las transformaciones que mantienen la forma y las proporciones se llaman semejanzas. LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD.
Congruencias y semejanzas de figuras planas
Matemáticas 4º ESO Opción B
TRIANGULOS SEMEJANTES PRESENTADO POR: JACKELINE ARREDONDO CASTELLANOS GRADO: 9ª AÑO: 2015 FECHA: 07/09/15.
SEMEJANZA DE TRIÁNGULOS Y CONGRUENCIA DE TRIÁNGULOS
Congruencias y semejanzas de figuras planas
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA U.D. 9 * 3º ESO E.AP.
Teorema de Thales I° medio 2015.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA U.D. 9 * 3º ESO E.AP.
El Triángulo.... Más que un polígono de tres lados...
UNIDAD 5.
Resuelve problemas de semejanza de triángulos y Teorema de Pitágoras.
SEMEJANZA DE TRIÁNGULOS
PPTCEG026EM32-A16V1 Semejanza de triángulos EM-32.
Más que un polígono de tres lados...
TEOREMA DE PITÁGORAS.
Semejanza.
SEMEJANZA Y CONGRUENCIA DE POLÍGONOS
Recuerdo: “Dos figuras son semejantes cuando la razón entre las medidas de sus lados homólogos (correspondientes) es constante, es decir son proporcionales.
Transcripción de la presentación:

Para mis alumnos de 4º B En esta presentación encontrarás : Definición y ejemplos del concepto de semejanza Criterios de semejanza de triángulos y ejemplos Descripción del concepto de semejanza y ejemplos Teorema de THALES Teorema de PITÁGORAS Algunos ejercicios sencillos Todos estos elementos son la base de los contenidos relacionados con la unidad de semejanza

Semejanza

Ejemplos de figuras semejantes Descripción: Dos figuras son semejantes cuando tienen la misma “forma”, pero no necesariamente el mismo tamaño Ejemplos de figuras semejantes

No son figuras semejantes

Así es, ya que los productos “cruzados” son iguales Definición geométrica: Dos figuras son semejantes cuando la razón entre las medidas de sus lados homólogos (correspondientes) es constante, es decir son proporcionales y sus ángulos correspondientes son congruentes Ejemplo:¿Los siguientes rectángulos son semejantes? ¿Tienen sus lados respectivos proporcionales? 10cm 4cm 5cm 2cm Así es, ya que los productos “cruzados” son iguales 10 •2 = 5 • 4 ¿Son sus ángulos correspondientes congruentes? Al cumplirse las dos condiciones anteriores, podemos decir que los dos rectángulos son semejantes Efectivamente, al tratarse de dos rectángulos, todos los ángulos miden 90º y se cumple que los ángulos correspondientes son congruentes

Triángulos semejantes Dos triángulos son semejantes si sus ángulos son, respectivamente, iguales y sus lados homólogos son proporcionales.

TEOREMA DE THALES Toda recta paralela a un lado de un triángulo, que corta a los otros dos lados, determina un triángulo semejante al grande. Los triángulos ABC y AB'C' son semejantes

Criterios de semejanza de triángulos Existen algunos principios que nos permiten determinar si dos triángulos son semejantes sin necesidad de medir y comparar todos sus lados y todos sus ángulos. Estos principios se conocen con el nombre de criterios de semejanza de triángulos.

Existen tres criterios de semejanza de triángulos AA ( ángulo-ángulo) LLL (lado-lado-lado) LAL (lado-ángulo-lado)

Primer criterio AA Dos triángulos que tienen los dos ángulos congruentes son semejantes entre sí. A´ B´ C’ A B C a´ a b´ b g´ g Es decir: Si a = a´ , b = b´ de lo anterior se deduce que g = g´ Entonces, D ABC semejante con DA´B´C´

¡SI! Ejemplo ¿Son los siguientes triángulos semejantes? 25 65 ¡SI! Por que al tener dos de sus ángulos congruentes, cumplen con el criterio AA

AA.- Dos triángulos son semejantes si tienen dos ángulos iguales. OTRO EJEMPLO AA.- Dos triángulos son semejantes si tienen dos ángulos iguales.  A = A‘ y B = B‘ C = C' Þ A' B' C' A' B' C' A B C B'' C'' Por el Teorema de Tales A'B''C'' y A'B'C' son semejantes. Por otra parte los triángulos ABC y A'B''C'' son iguales, por tener los ángulos iguales. Por tanto ABC = A'B''C'' es semejante al triángulo A'B'C'.

II. Segundo criterio LLL Dos triángulos que tienen los tres lados proporcionales son semejantes entre sí. A´ B´ C’ A B C b b´ a a´ c c´ Es decir: El cociente obtenido de comparar los lados homólogos entre sí recibe el nombre de razón de semejanza. a a´ = b b´ = =K c c´ Entonces, D ABC semejante con DA´B´C´

Efectivamente , así es, ya que los productos “cruzados” son iguales Ejemplo Determine si los triángulos ABC y PQR son semejantes A B C P Q R 1,5 3,5 5 3 7 10 Verifiquemos si las medidas de los lados son proporcionales 3,5 7 5 10 1,5 3 Razón de semejanza 1/2 = = = Efectivamente , así es, ya que los productos “cruzados” son iguales 1,5 • 7 = 3 • 3,5 = 10,5 3,5 • 10 = 7 • 5 = 35 Por lo tanto Triángulos ABC y PQR son semejantes por criterio LLL

III. Tercer criterio LAL Dos triángulos que tienen dos lados proporcionales y el ángulo comprendido entre ellos es igual, son semejantes entre sí. A´ B´ C’ A B C a a´ y a = a´ a a´ c c´ Es decir: = Entonces D ABC semejante a D A´B´C´

Efectivamente así es, ya que los productos “cruzados” son iguales Ejemplo ¿Son los triángulos ABC y DEF semejantes? Veamos si dos de sus lados son proporcionales A B C 4 3 D E F 9 12 3 9 4 = 12 Efectivamente así es, ya que los productos “cruzados” son iguales 3 • 12 = 4 • 9 Efectivamente, porque, tal como se señala en el dibujo, ambos son rectos ¿Los ángulos formados por estos dos lados son congruentes? Por criterio LAL Triángulos ABC y DEF son SEMEJANTES

Teorema de PITÁGORAS 32 + 42 = 52 En un triángulo rectángulo, la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa. Si los lados de un triángulo verifican la relación de Pitágoras, el triángulo es rectángulo. h2= c12 + c22 32 + 42 = 52

Algunas aplicaciones de estos conceptos

Para calcular la razón de semejanza se calcula una de las razones Ejercicio Conocemos las dimensiones de los lados de dos triángulos. Comprueba que son semejantes y halla la razón de semejanza. a) 8 cm, 10 cm, 12 cm b) 52 cm, 65 cm, 78 cm Efectivamente, al calcular los productos “cruzados”, podemos ver la proporcionalidad entre las medidas de los lados respectivos 52 •10 = 8 • 65 = 520 65 • 12 = 10 •78 = 780 65 10 78 12 Representemos el ejercicio 8 10 12 78 65 52 52 8 Comprobemos que las medidas de los lados homólogos son proporcionales Para calcular la razón de semejanza se calcula una de las razones 65 : 10 = 6,5 6,5 = = = Entonces los triángulos son semejantes por criterio LLL

La razón de semejanza es 3 Ejercicio Tenemos un triángulo cuyos lados miden 3 cm, 4 cm y 5 cm respectivamente y deseamos hacer una ampliación a escala 3:1. ¿Cuánto medirá cada lado?.¿Cuál es la razón de semejanza?. 3 4 5 x y z Representamos la situación = 9 X 3 Y 4 Z 5 12 = =15 Luego, debe ocurrir: 3 1 Entonces: X 3 X= 3· 3 = 9 = = = =3 = 3 Y 4 =12 Escala de ampliación Y = 4 · 3 =3 La razón de semejanza es 3 Z = 5 · 3 = 15 Z 5 =3

Para calcular la razón de semejanza se calcula una de las razones Otro ejercicio similar Los lados de un triángulo miden 30, 40 y 50 centímetros respectivamente. Los lados de un segundo triángulo miden 12, 16 y 20 centímetros. ¿Son semejantes?. En caso afirmativo, ¿cual es la razón de semejanza?. Para comprobar la proporcionalidad podemos efectuar los productos “cruzados” 30x16=480 y 40x12=480 además 40x20=800 y 16x50=800 50 30 40 12 16 20 Para calcular la razón de semejanza se calcula una de las razones 50 : 20 = 2,5 Comprobemos que las medidas de los lados homólogos son proporcionales 30 12 40 16 50 20 = =

Una aplicación x = De donde = 6,75m 3 • 4,5 X = 2 Un poste vertical de 3 metros proyecta una sombra de 2 metros; ¿qué altura tiene un árbol que a la misma hora proyecta una sombra de 4,5 metros?(Haz un dibujo del problema). Son semejantes por que cumplen el criterio AA, tienen iguales el ángulo recto y el ángulo de elevación que forman los rayos solares con el suelo 4,5m x 3m 2m sombra poste Los triángulos definidos por el poste y su sombra y el árbol y su sombra son semejantes, por lo tanto Formamos la proporción = 3 x 2 4,5 X = 3 • 4,5 2 De donde = 6,75m

Para terminar: otros resultados que derivan del Tª de PITÁGORAS y la SEMEJANZA de triángulos.

Teorema del Cateto Cateto c Cateto b c2 = n2 + h2 = = n2 + mn = = n(n + m) = = na b2 = m2 + h2 = = m2 + mn = = m(m + n) = = ma En un triángulo rectángulo el cuadrado de un cateto es igual al producto de la hipotenusa por la proyección del cateto sobre la misma.

Teorema de la Altura (h) Son ambos rectángulos  B B* = Los triángulos I y II son semejantes ya que: h2 = mn Se deduce que: En un triángulo rectángulo el cuadrado de la altura sobre la hipotenusa es igual al producto de las proyecciones de los catetos sobre la hipotenusa.