M A T R I C E S MATRICES matrices.

Slides:



Advertisements
Presentaciones similares
UNIVERSIDAD DE ORIENTE NUCLEO DE BOLIVAR COORDINACION GENERAL DE ESTUDIOS DE POSTGRADO POSTGRADO EN CIENCIAS ADMINISTRATIVAS MENCION FINANZAS. V COHORTE.
Advertisements

Apuntes 2º Bachillerato C.T.
UNIVERSIDAD DE ORIENTE NUCLEO DE BOLIVAR COORDINACION GENERAL DE ESTUDIOS DE POSTGRADO POSTGRADO EN CIENCIAS ADMINISTRATIVAS MENCION FINANZAS. VII COHORTE.
UNIVERSIDAD DE ORIENTE NUCLEO DE BOLIVAR COORDINACION GENERAL DE ESTUDIOS DE POSTGRADO POSTGRADO EN CIENCIAS ADMINISTRATIVAS MENCION FINANZAS. VI COHORTE.
Valores y Vectores Propios
OPERACIONES CON MATRICES
ÁLGEBRA MATRICIAL Y SISTEMAS DE ECUACIONES LINEALES
1.- Definiciones. 2.- Fórmulas. 3.- Esquema. 4.- Ejercicios.
MATRICES.
MATRICES Y DETERMINANTES
UPC MATRICES MA49 (EPE) Universidad Peruana de Ciencias Aplicadas
Lic. Mat. Helga Kelly Quiroz Chavil
MATRICES Concepto Se llama matriz de orden m x n a todo conjunto de elementos aij dispuestos en m líneas horizontales (filas) y n verticales (columnas)
Prof. Esteban Hernández
UPC TEMA : MATRICES TÓPICOS DE MÁTEMATICA 1 MA112 EPE-SISTEMAS
Distinguir y realizar los cálculos con las operaciones matriciales básicas. Las operaciones matriciales permiten el abordaje de los métodos del álgebra.
Informática empresarial
FUNCIONES, MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES.
ANALISIS MATEMÁTICO PARA ECONOMISTAS IV
POTENCIAS NATURALES DE MATRICES CUADRADAS
Matemática Básica (Ing.) 1 Sesión 11.3 Álgebra de matrices.
MATRICES CONTENIDO DEL TEMA: Concepto de matriz de orden n x m
Foro #1 Propiedades de las Matrices
Álgebra Superior Matrices Sesión II.
Propiedades de los determinantes.
Algebra Lineal.
A esto se le llama ser eficaz Ordenamos y mejoramos la información: A esto se le llama ser eficaz Operamos con matrices Imagen de DieselDemon bajo licencia.
UNIDAD 4 Clase 5.2 Tema: Determinantes
Matrices Conceptos generales
Tema 1 MATRICES.
Matrices – Determinantes Sistemas de Ecuaciones lineales
Liceo francisco del rosario Sánchez.  Definición de matriz  Se llama matriz de orden m×n a todo conjunto rectangular de elementos a ij dispuestos en.
Matrices – Determinantes Sistemas de Ecuaciones lineales
LICEO FRANCISCO DEL ROSARIO
006 DETERMINANTES DETERMINANTES.
Matrices y Determinantes
003 MATRICES MATRICES.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 SUMA DE MATRICES Bloque I * Tema 022.
Matemática Básica para Economistas MA99
La compañía de novedades ACE recibió un pedido del parque de diversiones mundo mágico por 90 pandas gigantes y 120 san bernardos. La gerencia de ACE.
Sesión 12.1 Álgebra de matrices.
Tema: Propiedades de los determinantes
Apuntes 2º Bachillerato C.S.
Matrices: Definiciones, matrices especiales y operaciones con matrices
MATRICES.
Matrices y Determinantes
III UNIDAD MATRICES.
Apuntes 2º Bachillerato C.S.
MATRICES Y DETERMINANTES
Definición: Una matriz es un arreglo rectangular de números en filas y columnas, encerrados entre corchetes o paréntesis. Orden de una Matriz: 3x4 Siendo.
003 MATRICES MATRICES.
Matrices.
MENORES Y COFACTORES.
MATRICES.
Unidad 2 Matrices.
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO
Grupo de Modelamiento de Sistemas Programa de Ingeniería Civil UdeA.
UPC DETERMINANTES TÓPICOS DE MÁTEMATICA 1 MA112 EPE Tema :
ALGEBRA DE MATRICES LAS MATRICES SE UTILIZAN EN EL CÁLCULO NUMÉRICO, EN LA RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES, DE LAS ECUACIONES DIFERENCIALES.
INTRODUCCIÓN A LAS MATRICES CON MATLAB
TEMA 2 : ALGEBRA DE MATRICES.
Matrices Los números bien colocados. Las matrices son cajas de números colocados en filas y columnas. Su orden viene dado por dos números nxr siendo n.
ALGEBRA CON VECTORES Y MATRICES Uso de MatLab.
Uso de MatLab. Introducción El entorno de trabajo de MatLab El Escritorio de Matlab (Matlab Desktop) El menú inicio Command Window Command History Browser.
@ Angel Prieto BenitoMatemáticas 2º Bach. C.T.1 MATRICES U.D. 1 * 2º BCT.
Definición de matriz Se llama matriz de orden m×n a todo conjunto rectangular de elementos a ij dispuestos en m líneas horizontales (filas) y n verticales.
Universidad de Oriente Núcleo Monagas Escuela de Ciencias Sociales y Administrativa Departamento de Contaduría Publica Profesora: Milagros Coraspe Ballicher:
Profesora: Milagros Coraspe Realizado por: Almérida, Gissell C.I.: Valladares, Angélica C.I.: Universidad De Oriente Núcleo Monagas.
M A T R I C E S MATRICES matrices.
Transcripción de la presentación:

M A T R I C E S MATRICES matrices

MATRIZ Es un arreglo rectangular de números. Los números del arreglo se denominan elementos de la matriz

El tamaño de una matriz se mide en término del número de renglones (líneas horizontales) y de columnas (líneas verticales) que contiene.

Una matriz cuadrada es simétrica si A = AT, (aij = aji para todos i, j) Sus elementos tienen simetría respecto de la diagonal principal.

Operaciones con matrices Definición (Suma de matrices): Sean A={aij} y B={bij} matrices de la misma dimensión mxn. La suma A+B es la matriz C={cij} de dimensión mxn, donde cij = aij + bij , esto es, la suma de las entradas correspondientes. Ejemplo: Definición (Producto de una matriz por un escalar): Sea A={aij} una matriz mxn y r un escalar. El producto rA del escalar r y la matriz A es la matriz B={bij} de la misma dimensión de A tal que bij = r aij

Multiplicación de matrices: Como ya se había visto en el capítulo anterior, un sistema de ecuaciones lineales, por ejemplo 2x1 - 3x2=7 3x1 - x2=2, tiene asociado una matriz A correspondiente a las incógnitas, y un vector b correspondiente a los términos independientes, es decir, Si ahora se escriben las incógnitas como un vector se puede denotar el sistema de ecuaciones lineales como Ax=b, es decir Esta última ecuación sugiere la noción de multiplicación de una matriz A por un vector columna x. Como noción preliminar, se introducirá el concepto de producto escalar o producto punto de dos vectores.

Definición (Multiplicación de matrices): Sean A={aik} una matriz de dimensión mxn y B={bkj} una matriz de dimensión nxs. El producto AB es la matriz C={cij} de dimensión mxs, donde la entrada cij de C es el producto punto de la i-ésima fila de A y la j-ésima columna de B. Nota: Obsérvese que el producto de dos matrices está definido solamente cuando el número de columnas de A es igual al número de filas de B. Ejemplo: (-3)(5) + (5)(0) + (8)(2) = 1 Posición c23 Columna 3 Fila 2

En general, el elemento cij está dado por Por ejemplo, si A3x4 , B4x7 , C7x3 , los productos AB3x7, BC4x3 y CA7x4 están definidos, mientras que no es posible multiplicar BA, AC y CB. Debe observarse que el producto de matrices en general no es conmutativa, esto es, aún cuando los productos AB y BA están definidos, no es necesariamente cierto que AB=BA, como muestra el siguiente ejemplo

Algunas veces es deseable calcular una fila o una columna particular del producto AB. El siguiente resultado permite obtenerlas: * La j-ésima columna del producto AB=A[j-ésima columna de la matriz B] * La i-ésima fila del producto AB=[i-ésima fila de la matriz A]B Ejemplos:

De este último ejemplo se puede concluir que la j-ésima columna del producto AB puede verse como una combinación de las columnas de la matriz A con los coeficientes de la j-ésima columna de la matriz B.