Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa TEMA 4 Síntesis de Filtros Pasivos.

Slides:



Advertisements
Presentaciones similares
FACTORIZACIÓN LU Bachilleres:
Advertisements

DESCRIPCION DE SISTEMAS
TEMA 7 CINEMÁTICA Primera Parte.
Impedancia características de la línea de transmisión
LÍNEAS DE TRASMISIÓN. LÍNEAS DE TRASMISIÓN Las líneas de trasmisión son las interconexiones que trasmiten la energía electromagnética de un punto a.
Mesa de Tejo II. Mesa de Tejo II Presentación para trabajar vectores: variación de velocidad, aceleración y fuerza.
Conservación del Momento Angular:
Unidad académica: Ingenierías
Repaso conceptos de electrónica
Departamento de Control, División de Ingeniería Eléctrica Facultad de Ingeniería UNAM Lugar de las raíces México D.F. a 25 de Septiembre de 2006.
Representación en espacio de estado
Tema V Sistemas no Lineales de Ecuaciones Diferenciales - Estabilidad de Sistemas de EDO Ecuaciones Diferenciales.
PROBLEMAS ELECTROSTÁTICOS
Perdidas en una línea de transmisión
Regresión y correlación
Repaso de Sistemas Lineales
Tema 13 Teoría de Redes Topología de redes: Conceptos fundamentales
Supongamos que nos plantean el siguiente problema:
Tema 2: Métodos de ajuste
GRAFOS HUGO ARAYA CARRASCO.
EXPONENTES Y RADICALES
CAPITULO 13 Análisis de Circuitos mediante Transformada de Laplace
Resolución de Problemas Método Simplex
CIRCUITOS RLC Ing. Christian Lezama Cuellar.
A TRAVÉS DE LOS ESTÁNDARES DE EXCELENCIA EN MATEMÁTICAS Estándar 2:
Calcular el equivalente Thevenin
TEMA Nº 1 Conjuntos numéricos.
NÚMEROS REALES Día 02 * 1º BAD CS
Descomposición Factorial Unidad 5
ELECTRICIDAD Y CIRCUITOS ELÉCTRICOS
CÁLCULO ELÉCTRICO DE LÍNEAS
Guías de ondas Medios de Transmisión Ignacio Flores Llamas.
Corriente alterna 1. Generador de corriente alterna. Frecuencia y fase. Valores eficaces. Fasores. 2. Circuito con resistencia, condensador o bobina. Impedancia.
1 UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Escuela de Ingeniería Industrial.
Los Números Racionales
CONCEPTOS BÁSICOS DE MECÁNICA CUÁNTICA
FUNDAMENTOS DE ELECTRÓNICA
ING. MGS. OSCAR GUAYPATIN PICO
TEMA 2: CIRCUITOS DE CC (6 HORAS)
NÚMEROS REALES.
Variables estadísticas bidimensionales
NÚMEROS RACIONALES Día 01 * 1º BAD CS
SÍNTESIS DE FILTROS Autor: PEDRO QUINTANA MORALES Dto
LOS NÚMEROS REALES.
CALCULO DIFERENCIAL E INTEGRAL TAREA 12
Ecuaciones Algebraicas
Conceptos Antenas Jesus Rodriguez.
VALOR ABSOLUTO Y LOS NÚMEROS REALES
UNIDADES.
CONOZCAMOS SOBRE ELECTRICIDAD
“CURSO PROPEDÉUTICO PARA EL MEJORAMIENTO DEL PENSAMIENTO MATEMÁTICO”
Análisis de Fourier.
PROCESADORES DIGITALES DE SEÑALES
Matemáticas II. Profesor: Ing. Yadhira M. Rangel Carrillo.
TEORÍA de CIRCUITOS I Año 2010
Análisis cinemático: ACELERACION
MATRICES.
NÚMEROS REALES.
CONTROL CLÁSICO Y MODERNO
EL TRANSISTOR COMO AMPLIFICADOR
TEMA I Teoría de Circuitos
TEMA I Teoría de Circuitos
FILTROS ACTIVOS Basados en AO. VENTAJAS:
TEMA I Teoría de Circuitos
DEFINICIÓN DE NORMALIDAD MEDIDAS DE DESCRIPCIÓN DE DATOS
TEMA II Electrónica Analógica
ESTADISTICA DESCRIPTIVA BIVARIADA MEDIDAS DE RELACIÓN ENTRE VARIABLES CUANTITATIVAS.
CONJUNTOS NUMÉRICOS. 1.Números Naturales 1.1 Consecutividad numérica 1.2 Paridad e imparidad 1.3 Números primos 1.4 Múltiplos y divisores 1.5 Mínimo Común.
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA UNIDAD DE ADMISION CURSO PROPEDEUTICO ASIGNATURA FISICA Prof. Juan Retamal G.
1 Los números reales Los números racionales Los números irracionales
Transcripción de la presentación:

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa TEMA 4 Síntesis de Filtros Pasivos

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Los primeros desarrollados cronológicamente Necesidad de tres tipos de elementos diferentes (RLC) Las resistencias de fuente y de carga suponen un modelo adecuado Al no haber disipación de potencia dentro de la bipuerta, los filtros tienen unas magníficas características de sensibilidad Las técnicas activas se basan en muchos casos en emulación activa de escaleras pasivas RLC

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Proceso de síntesis: –Obtener, a partir de la función de transferencia, y tras elegir unos valores de resistencias terminales, una descripción funcional de la bipuerta LC que necesitamos, normalmente en forma de parámetros de impedancia y/o admitancia. –A partir de la descripción funcional de la bipuerta, y tras comprobar que dichas especificaciones son realizables, obtener la descripción a nivel eléctrico de la misma: su topología y los valores de los elementos. Aproximaciones clásicas: especificaciones de magnitud y ceros de transmisión en jw: estructuras en escalera (tienen por definición sus C.T. en jw) FILTRO PASIVO = FILTRO RLC = FILTRO LC DOBLEMENTE TERMINADO = FILTRO ESCALERA LC (DOBLEMENTE TERMINADO)

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa

Excitación en intensidad Excitación en tensión Teorema de Reciprocidad Admitancias Impedancias

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Caracterización de monopuertas –Se caracterizan por su inmitancia (admitancia o impedancia). Son inversas y por lo tanto si una es realizable, la otra también lo será. F(s) es realizable LC sii F(s) es función racional real y: – –Todos los polos de F(s) están en jw, son simples y con residuos reales y positivos Esto es válido tanto para Z(s) como para Y(s) (son inversas).

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Propiedades de las Inmitancias LC: –Polos y ceros imaginarios, puros y simples (incluídos s = 0 y s → ∞) –Los residuos de los polos son reales y positivos –Polos y ceros por pares complejo-conjugados (salvo s = 0 y s → ∞) –F(s) es impar: F(s) = -F(-s) – –Orden(num) = orden(den) ± 1 –Polos y ceros de F(s) alternados en jw –N(s) y D(s) tienen la forma: –D(s) es par y N(s) es impar o viceversa –En s = 0 y en s → ∞ habrá siempre o un cero o un polo.

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Realizaciones canónicas de inmitancias LC: –Trataremos de descomponer F(s) para que cada sumando se corresponda con una L, una C o una asociación simple LC. Suma de admitancias → asociación de elementos en paralelo Suma de impedancias → asociación de elementos en serie –Menor coste = menor número de elementos –Realización canónica: coste mínimo (nº de elementos = nº de polos de la inmitancia) –Más coste = más flexibilidad (restricciones adicionales)

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa

Síntesis de FOSTER: –FOSTER 1: Realización basada en fracciones simples de Z(s) –FOSTER 2: Realización basada en fracciones simples de Y(s) FOSTER 1 FOSTER 2

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Síntesis de CAUER: –En cada eliminación se elige el tipo de polo “contrario” al eliminado antes: realización en escalera (un polo de admitancia: rama paralelo; un polo de impedancia: rama serie) –a) CAUER 1: Eliminación de polos siempre en s → ∞ –b) CAUER 2: Eliminación de polos siempre en s = 0

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Realizaciones no canónicas: eliminaciones parciales –Hasta ahora el circuito se implementa dando a cada elemento (o par de elementos) el valor del residuo del correspondiente sumando: el polo desaparece totalmente de la inmitancia restante. –Si se asocia sólo parte de este residuo, se genera una topología idéntica pero con valores de los elementos distintos y la inmitancia restante aún contiene el polo ya generado. Se habla entonces de eliminación parcial. –La inmitancia restante tiene aún el sumando eliminado parcialmente pero con un valor menor –Residuo parcial = [0, residuo completo] –Da lugar a realizaciones no canónicas porque empleamos 1 elemento (si la eliminación es en s = 0 ó s → ∞) o dos (polos finitos) sin por ello reducir el orden de la inmitancia. –No debe usarse salvo en el caso de restricciones impuestas por situaciones externas porque conducen a circuitos más complejos

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Diagramas Polo-Cero: efecto de las eliminaciones –Eliminación parcial y total de un polo en infinito

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Diagramas Polo-Cero: efecto de las eliminaciones –Eliminación parcial y total de un polo en cero

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Diagramas Polo-Cero: efecto de las eliminaciones –Eliminación parcial y total de un polo interno

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Diagramas Polo-Cero: efecto de las eliminaciones –Los ceros internos se mueven hacia la localización del polo eliminado total o parcialmente –Ningún polo se desplaza –Los ceros en cero o infinito no se desplazan (salvo que sean los últimos que quedan) –Los ceros internos en su desplazamiento nunca cruzan un polo adyacente –El desplazamiento de cada cero es mayor cuanto más residuo eliminemos –Cuanto más cerca está un cero del polo eliminado mayor es su desplazamiento (cuidado con el concepto de distancia) –Eliminación total de un polo en cero o infinito: El polo desaparece totalmente y el cero finito más cercano queda situado en la posición del polo eliminado –Eliminación total de un polo interno: El polo desaparece junto con uno de sus ceros adyacentes, quedando el otro cero adyacente en las cercanías de la posición del polo eliminado

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Realizabilidad LCM de Bipuertas –Todos los elementos f ij (s) de F(s) deben ser funciones racionales reales y la bipuerta debe ser recíproca: –La expresión debe ser una función racional real positiva para todo a 1 y a 2 reales, con las mismas restricciones necesarias para que una inmitancia sea realizable LCM, es decir Todos los polos de F(s) deben estar en jw, ser simples y con residuos reales y positivos –Haciendo a 1 = 0 ó a 2 = 0 se deduce que f 11 (s) y f 22 (s) deben cumplir las mismas condiciones que F(s) (lógico, son inmitancias) – Polos en el eje jw, simples y con residuos reales (no tienen porqué ser positivos)

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Condición de los residuos –Debe cumplirse en todos los polos –Se deduce que todos los polos de f 12 (s) son necesariamente polos de f 11 (s) y de f 22 (s) mientras que lo contrario no tiene porqué ser cierto

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Propiedades de los parámetros de inmitancias de bipuertas LC: –Polos y ceros de f 11 (s) y f 22 (s) y polos de f 12 (s) imaginarios, puros y simples. Los ceros de f 12 (s) pueden tener parte real no nula y ser múltiples –Los residuos de los polos de f 11 (s) y f 22 (s) son reales y positivos. Los de f 12 (s) son reales pero pueden ser negativos –Todos los polos y ceros por pares complejo-conjugados (salvo s = 0 y s → ∞) –Las funciones f 11 (s), f 22 (s) y f 12 (s) son todas impares – –Para f 11 (s) y f 22 (s) la diferencia en el orden entre num y den es +1 ó -1 –Polos y ceros de f 11 (s) y f 22 (s) alternados en jw –N(s) de f 11 (s) y f 22 (s) y D(s) de las tres tienen la forma: –D(s) es par y N(s) es impar o viceversa –En s = 0 y en s → ∞ habrá siempre o un cero o un polo.

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Clasificación de los polos de los parámetros de inmitancia –Polos compartidos: El residuo de los tres parámetros de inmitancia es no nulo. –Polos privados: Caso contrario –No pueden existir polos privados de f 12 (s) (ver condición de los residuos) –Un polo privado puede serlo de f 11 (s), de f 22 (s) o de ambos (considerarlo como dos polos privados en ese caso) –Polos compactos: La condición de los residuos se cumple con una igualdad estricta –Polos no compactos: Caso contrario Los polos compartidos pueden ser compactos o no Los polos privados siempre son compactos salvo cuando son comunes a f 11 (s) y f 22 (s) en cuyo caso son siempre no compactos

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Clasificación de los polos de los parámetros de inmitancia

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Caracterización de filtros LC pasivos doblemente terminados: parámetros de transducción Coeficiente de reflexión

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Caracterización de filtros LC pasivos doblemente terminados: parámetros de transducción

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Relación entre parámetros de transducción y de inmitancia

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Relación entre parámetros de transducción y de inmitancia

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Realización de bipuertas LC en escalera –z 11 –z 22 –y 11 –Y 22 –Monopuerta ¿Bipuerta? (Necesitamos elegir la 2ª puerta) –Hay que garantizar la realización simultánea de las 3 inmitancias Inmitancia de síntesis z 12 y 12 z ij y ij y ij = I i /V j con V i = 0z ij = V i /I j con I i = 0

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Ceros de Transmisión y parámetros de Inmitancia –Sintentizando la I.S. aseguramos que los polos de transinmitancia también se sintetizan correctamente (condición de los residuos) –Los ceros de la transinmitancia deben crearse mediante la eliminación de los polos de la I.S. –Sólo pueden existir TRES causas para la aparición de un cero de transmisión en filtros LC doblemente terminados: A) Un cero de transinmitancia B) Un polo privado C) Un polo compartido no compacto –Un polo compartido compacto NUNCA crea un cero de transmisión!!

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Teoremas de Bader –Inmitancias prescritas: los parámetros de inmitancia que se desean realizar –Inmitancias realizadas: los parámetros de inmitancia que se miden sobre el circuito implementado Primer Teorema de Bader: –Si en el proceso de realización de la inmitancia de síntesis, todas las eliminaciones parciales son seguidas por una eliminación total a la misma frecuencia, entonces los parámetros de inmitancia realizados tendrán una inmitancia en la otra puerta en la que todos sus polos son polos compartidos compactos

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Teoremas de Bader I.S. Se usa como referencia para ver dónde están los ceros de transinmitancia

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Teoremas de Bader –Primer corolario del primer Teorema de Bader: –Si en el proceso de realización de la inmitancia de síntesis se realiza alguna eliminación parcial a una frecuencia que no es polo de la inmitancia de síntesis, y esta eliminación parcial no es seguida por una eliminación total a la misma frecuencia, entonces los parámetros de inmitancia realizados tendrán un polo privado de la inmitancia de la otra puerta a esa frecuencia

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa I.S. Esta frecuencia no es polo de la I.S. z 22 realizada tendrá un PP en ∞

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Teoremas de Bader –Segundo corolario al primer Teorema de Bader: –Si en el proceso de realización de la inmitancia de síntesis se realiza alguna eliminación parcial a una frecuencia que sí es polo de la inmitancia de síntesis, y esta eliminación parcial no es seguida por una eliminación total a la misma frecuencia, entonces los parámetros de inmitancia realizados tendrán un polo compartido no compacto a esa frecuencia Esta frecuencia sí es polo de la I.S. y 22 realizada tendrá un PCNP en ∞

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Teoremas de Bader –Segundo Teorema de Bader: –Aquellos polos de la inmitancia de síntesis a cuya frecuencia no se haya realizado ninguna eliminación en el proceso de realización, serán polos compartidos compactos de los parámetros de inmitancia realizados Estos polos resultan ser PCC de los parámetros de inmitancia realizados

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Proceso de síntesis de la bipuerta –1) Tomar como I.S. aquella que tenga (si los hay) polos privados y eliminarlos en primer lugar. Si no existen, tomar una al azar (mayor orden) –2) Durante la realización de la inmitancia de síntesis estamos obligados a realizar eliminaciones totales a las frecuencias de los ceros de transmisión debidos a ceros de la transinmitancia –Se implementa así la I.S., creando a la vez los ceros de transmisión de la transinmitancia. Los polos de la transinmitancia se crearán simultáneamente con los de la I.S., porque son todos compartidos –3) En el proceso de realización de la I.S. no podemos realizar ninguna eliminación a ninguna frecuencia que no sea un cero de transmisión del filtro especificado

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Proceso de síntesis de la bipuerta 1) Análisis de los polos y ceros de las inmitancias seleccionadas: –f 11 (s) → PCCs, PPs, PCNCs –f 22 (s) → PCCs, PPs, PCNCs –f 12 (s) → PCCs, PCNCs; CEROS de TRANSINMITANCIA Aparecen diferentes casos que estudiaremos por separado: –A) Todos los polos resultan ser PCCs –B) Existe 1 (o varios) PP asociado a una única inmitancia (los restantes son PCCs) –C) Existe 1 (o varios) PP asociado a las dos inmitancias (los restantes son PCCs) –D) Existe 1 (o varios) PCNC

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa A) Si todos los polos resultan ser PCCs 1) Se toma f 11 (s) ó f 22 (s) como I.S. 2) Se realiza la I.S. realizando eliminaciones sólo en las frecuencias de los ceros de transinmitancia siempre respetando los Teoremas de Bader –Así se asegura que todos los polos realizados se implementan como PCCs. –f iir (s) = f iip (s) (ver 2º Teorema de Bader) –f 12 prescrita = K·f 12 realizada

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Implementación de la constante de la transinmitancia –f 12 prescrita = K·f 12 realizada Impedancia Admitancia

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa Eliminación del transformador

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa B) Si existe 1 PP (o varios) asociado a una única inmitancia con todos los demás polos siendo PCCs 1) Se toma dicha inmitancia como I.S. (es la de mayor orden) 2) Se elimina en primer lugar el/los PP/s existente/s 3) Se realiza la I.S. realizando eliminaciones sólo en las frecuencias de los ceros de transinmitancia siempre respetando los Teoremas de Bader (así se asegura que todos los polos realizados se implementan como PCCs) –f iir (s) = f iip (s) (ver 2º Teorema de Bader) –f 12 prescrita = K·f 12 realizada

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa z 11 como I.S.: PP +_+_ V1V1 I1I1 +_+_ V2V2 I2I2 z 22 (s) = V 2 / I 2 con I 1 = 0 z 12 (s) = V 1 / I 2 con I 1 = 0 PP +_+_ V1V1 I1I1 +_+_ V2V2 I2I2 z 11 (s) = V 1 / I 1 con I 2 = 0 z 12 (s) = V 2 / I 1 con I 2 = 0 z 22 como I.S.: y 11 como I.S.: PP +_+_ V1V1 I1I1 +_+_ V2V2 I2I2 y 22 (s) = I 2 / V 2 con V 1 = 0 y 12 (s) = I 1 / V 2 con V 1 = 0 PP +_+_ V1V1 I1I1 +_+_ V2V2 I2I2 y 11 (s) = I 1 / V 1 con V 2 = 0 y 12 (s) = I 2 / V 1 con V 2 = 0 y 22 como I.S.: ¿Porqué se elimina 1º el PP de la I.S.?

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa C) Si existe 1 PP (o varios) asociado a las dos inmitancias con todos los demás polos siendo PCCs 1) Se toma como I.S. la de mayor orden 2) Se elimina en primer lugar el/los PP/s existente/s en la I.S. 3) Se realiza la I.S. realizando eliminaciones sólo en las frecuencias de los ceros de transinmitancia siempre respetando los Teoremas de Bader (así se asegura que todos los polos realizados se implementan como PCCs) –f ISr (s) = f ISp (s) (ver 2º Teorema de Bader) –f 12p (s) = K·f 12r (s) –f OPr (s) = f OPp (s) salvo por el/los PP/s (es uno o varios sumandos de f OPp (s) que no han sido realizados) Se añade el/los correspondiente/s bloque/s en serie o paralelo en la otra puerta

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa D) Si existe 1 PCNC (o varios) con todos los demás polos PCCs 1) Se toma como I.S. la de mayor orden 2) Se realiza la I.S. realizando eliminaciones sólo en las frecuencias de los ceros de transinmitancia siempre respetando los Teoremas de Bader (así se asegura que todos los polos realizados se implementan como PCCs) –f ISr (s) = f ISp (s) (ver 2º Teorema de Bader) –f 12p (s) = K·f 12r (s) –f OPr (s) = f OPp (s) salvo por el/los PCNC/s (es uno o varios sumandos de f OPp (s) que han sido realizados pero sólo con una parte del residuo que les corresponde) –Se añade un bloque (en serie o paralelo) por cada PCNC en la otra puerta con la diferencia de residuo resultante

Dpto. Electrónica y Electromagnetismo Oscar Guerra Vinuesa A) Si existe 1 PCNC (o varios) con todos los demás polos PCCs 1) Se añade un bloque (en serie o paralelo) por cada PCNC en la última rama de la otra puerta con la diferencia de residuo resultante: Podemos asegurar que k 22p > k 22r luego Δk > 0 → Elemento/s de valor positivo