1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.

Slides:



Advertisements
Presentaciones similares
Teorema de Stokes John Jairo Liñán Caro.
Advertisements

TECNOLOGICO DE ESTUDIOS SUPERIORES DE TIANGUISTENCO
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
Electricidad y magnetismo
1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y.
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
Cálculo vectorial con el
Instituto Nacional de Astrofísica, Óptica y Electrónica
Sea f: D n  , una función definida en un conjunto abierto D de n.
CLASE 13 PARTE 1: FUNCIONES REALES DE DOS VARIABLES. Plano tangente.
Cálculo Diferencial e Integral II. Eleonora Catsigeras.
Programa de Cálculo Vectorial
MAGNITUDES FÍSICAS M. ESCALARES: Son aquellas que constan de un valor numérico y una unidad de medida, con ello son suficientemente descritas M. VECTORIALES:
1.8 Energía potencial eléctrica y definición de potencial eléctrico.
Recursos matemáticos para física
Recursos matemáticos para la física
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
Cálculo vectorial El curso debería ser de un año
MÓDULO 1 VECTORES.  CANTIDADES ESCALARES Y VECTORIALES  Definición de vector  Cantidades escalares  Cantidades vectoriales  ÁLGEBRA VECTORIAL  Sistemas.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
DERIVADAS PARCIALES Gráficas.

Álgebra lineal.
Vectores Javier Junquera.
TEMA I TEORÍA DE CAMPOS.
Cálculo vectorial El curso debería ser de un año
Cálculo vectorial El curso debería ser de un año
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
Examen de Ciencias Básicas
MECÁNICA ENRIQUE DIEZ (1 er semestre) CURSO 2006/07.
Vectores.
CAMPOS VECTORIALES DEFINICIÓN DOMINIO . REPRESENTACIÓN GEOMÉTRICA
ANTENAS Y RADIO PROPAGACIÓN MEDELLÍN, I SEM 2014 INSTITUTO TECNOLÓGICO METROPOLITANO.
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
CALCULO VECTORIAL CALCULO VECTORIAL.
Cálculo vectorial El curso debería ser de un año
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
1.Sistemas de ecuaciones lineales 2.Álgebra de matrices 3.Determinantes 4.Geometría de los vectores 5.Espacios vectoriales 6.Valores propios y diagonalización.
Ecuaciones de Maxwell G11NL25william.
RADIOPROPAGACIÓN ITM – 2014 SEMANA 2. PRODUCTO PUNTO.
VECTORES.
UNIVERSIDAD NACIONAL DE INGENIERÍA
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
El campo magnético en el vacío.
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
Antonio J. Barbero García
TEMA 8 Análisis Matemático II Presentaciones en el Aula
TEMA 9 Análisis Matemático II Presentaciones en el Aula
TEMA 10 Análisis Matemático II Presentaciones en el Aula
14.4 Planos tangentes Aproximación lineal Diferenciabilidad
 y, para q.e.d. cte  0 Continuación demostración.
José R. Narro Introducción al Cálculo Infinitesimal Tema 4: Diferenciabilidad de funciones reales de varias variables reales. José R. Narro 1 Tema 4 1.Derivadas.
Integrales curvilíneas
Programa de Cálculo Vectorial
TEMA 2 CAMPOS TEORÍA DE CAMPOS FISICA I CAMPOS ESCALARES. REPRESENTACIÓN ESTACIONARIO 1.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
Instituto Nacional de Astrofísica, Óptica y Electrónica
SEMANA 7 – Sesión presencial 1
CALCULO VECTORIAL.
OPERADORES DIFERENCIALES Curso 2014/15.
ROTACIONAL Y DIVERGENCIA
Instituto Nacional de Astrofísica, Óptica y Electrónica
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
Profesor: Rafael Barahona Paz
Profesor: Rafael Barahona Paz
CLASE 13 PARTE 1: FUNCIONES REALES DE DOS VARIABLES. Plano tangente. Cálculo Diferencial e Integral II. Eleonora Catsigeras. IMERL. Fac. de Ingeniería.
Transcripción de la presentación:

1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el rotacional 5.Integración múltiple 6.Integral de línea 7.Integral de superficie 8.El teorema de la divergencia 9.El teorema de Stokes 10.Otros teoremas integrales

Lo demostraremos más adelante, utilizando el teorema de Stokes

Necesitamos describir las superficies y sus características, principalmente debemos ser capaces de calcular el vector normal. Necesitamos un campo escalar o un campo vectorial, que son las funciones que vamos a integrar Necesitamos calcular la función a integrar sobre la superficie Finalmente, debemos proyectar el campo sobre la normal a la superficie

Gráfica