Aritmética: Propiedades y operaciones con números reales

Slides:



Advertisements
Presentaciones similares
Álgebra 2010 Clase N° 2 Conjuntos numéricos II
Advertisements

LOGARITMOS.
Desigualdades Una desigualdad es una oración conteniendo < (menor que), > (mayor que), ≤ (menor o igual que), ≥ (mayor o igual que) o ≠ (no es igual)
Propiedades de los Reales
Año 2009 MATEMATICA Todo lo visto en 2º Año … Autoras: Abba - Romero.
MATEMÁTICAS 8vo BÁSICO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Álgebra 2010 Clase N° 1 Conjuntos numéricos I
Operaciones con Números Reales
Polinomios en una variable
Razonamiento Cuantitativo
Razonamiento Cuantitativo
Desigualdades lineales con una variable
Razonamiento Cuantitativo
Resolución de Ecuaciones Lineales
Resolución de ecuaciones cuadráticas por Factorización
Operaciones con exponentes
Prof: Haroldo Cornejo Olivarí
2.1 – Expresiones algebraicas
UNIDAD 2: FUNCIONES.
POTENCIACIÓN Y RADICACIÓN ESTUDIANTE: Javier Chávez Flores
NÚMEROS ENTEROS, NUMEROS NATURALES, MÚLTIPLOS Y DIVISORES
Operaciones y propiedades
“Definiciones, Operaciones algebraicas, MCM, MCD”
Ecuaciones y Resolución de Ecuaciones Lineales
Exponentes Racionales y Radicales
5° MATEMÁTICA 1 NÚMEROS REALES.
UNIDAD 04 Los números enteros
Números enteros.
JUGANDO CON LOS NÚMEROS
REGLAS DE LOS SIGNOS.
Universidad Metropolitana Título V Campus Orden de Operaciones
Operaciones con fracciones
Expresiones algebraicas
UNIDAD 04 Los números enteros
NÚMEROS ENTEROS Visita al Profe Videos Ecuaciones Adición Propiedades
Álgebra elemental.
Grupo 6 Los Números Enteros.
1.Fundamentos Algebraicos MATEMÁTICAS BÁSICAS Por José Manuel Manrique Arreola.
MATEMÁTICA BÁSICA CERO
A TRAVÉS DE LOS ESTÁNDARES DE EXCELENCIA EN MATEMÁTICAS Estándar 2:
TEMA Nº 1 Conjuntos numéricos.
MATEMÁTICA 2013 Unidad 0 Repaso.
INSTITUTO TECNOLÓGICO DE MINATITLÁN
ECUACIONES LINEALES DEFINICIÓN
ING. ROBERTO CARLOS SÁNCHEZ BARRERA
Unidad 1. Números reales Algebra superior.
Materiales complementarios
Razonamiento Cuantitativo
LOS NÚMEROS REALES.
Conceptos Fundamentales de Álgebra
POTENCIACIÓN.
Matemáticas 1 NOMBRE DEL ALUMNO: Arturo Morales Texon
MATEMÁTICA GENERAL MAT1041
TEMA 2: NÚMEROS ENTEROS.
TEMA 2: POTENCIAS DE BASE ENTERA
UNIVERSIDAD DE GUADALAJARA Centro Universitario de Ciencias Económico Administrativas Departamento de Métodos Cuantitativos Ciclo 2012-A Curso Propedéutico.
ARITMETICA.
Operaciones Algebraicas
Aritmética números reales.
PROPIEDADES DE LOS NÚMEROS REALES
NUMEROS REALES. VALOR ABSOLUTO. DESIGUALDADES
NÚMEROS REALES.
Ejercicio: π 4 Los Números Enteros …… 5 Valor Absoluto de un Número |-5 | = |+7| = | 0 | = |-15| = | 42 | = “El valor absoluto de un número,
Introducción Matemática Nivelatoria
POTENCIACION ALGEBRAICA
CONJUNTOS NUMÉRICOS. 1.Números Naturales 1.1 Consecutividad numérica 1.2 Paridad e imparidad 1.3 Números primos 1.4 Múltiplos y divisores 1.5 Mínimo Común.
YULY PAOLA GÓMEZ PARRA *NÚMEROS NATURALES *NÚMEROS ENTEROS.
IN = Naturales INo = Cardinales Z = Enteros Q = Racionales Q* = Irracionales IR = Reales I = Imaginarios C = Complejos.
Dr. Edwin Alfonso Sosa1 Aritmética: Propiedades y operaciones con números reales Fundamentos de álgebra Dr. Alfonso-Sosa.
Transcripción de la presentación:

Aritmética: Propiedades y operaciones con números reales Fundamentos de álgebra Dr. Alfonso-Sosa Dr. Edwin Alfonso Sosa

Primera Unidad: Números Reales Subconjuntos de los números Reales Propiedades de los números Reales Orden de operaciones y valor absoluto de un numero real. Aplicaciones Dr. Edwin Alfonso Sosa

Capacitantes Reconocer los subconjuntos del sistema de los números reales. Clasificar un numero dentro del sistema de números reales. Efectuar las operaciones de adición, sustracción, multiplicación y división en los números reales. Determinar valor absoluto, potencia y raíz enésima de un numero real. Dr. Edwin Alfonso Sosa

NUMEROS REALES Conjunto es una colección de objetos. Los elementos de un conjunto se colocan dentro de un par de llaves Conjunto de números naturales Dr. Edwin Alfonso Sosa

Conjunto: Enteros no negativos (números cardinales) Los enteros positivos y el cero conforman el conjunto de los números enteros no negativos. El cero no tiene signo: no es positivo y no es negativo. 1 2 3 Números enteros no negativos Dr. Edwin Alfonso Sosa

Conjunto: Enteros negativos Los enteros negativos son necesarios para describir situaciones como: Temperatura bajo cero: -10˚ Déficit en una cuenta de banco: -$40 Física: dirección de una fuerza F = -10 N -1 es mayor que el -3 Dr. Edwin Alfonso Sosa

Conjunto Enteros Recta numérica (recta de los números reales) muestra a el conjunto de los enteros -1 -2 -3 1 2 3 Números enteros no negativos Números enteros negativos origen Dr. Edwin Alfonso Sosa

Conjunto: Números Racionales {Enteros} → {Enteros negativos; enteros no negativos} Para las siguientes situaciones tenemos que incluir fracciones Trabajo: 8 ½ horas Me perdí la mitad (1/2) de la película Costo de un articulo: $1.25 = $ 1 ¼ {Racionales} → {Enteros;fracciones no enteras} Dr. Edwin Alfonso Sosa

Posición de los números racionales Recta numérica (recta de los números reales) ejemplo de números racionales. origen -1 -2 -3 1 2 3 -3/2 1/2 Dr. Edwin Alfonso Sosa

Def. Numero Racional A un numero real se le llama racional si puede escribirse como el cociente p / q de dos enteros, donde q ≠ 0 (q distinto de cero). Ejemplos Dr. Edwin Alfonso Sosa

Def. Numero Irracional Los números reales que no pueden escribirse como cocientes de dos enteros se denominan irracionales. Ejemplos La representación de un numero irracional no termina ni se repite. Ejemplos: solo se aproxima Dr. Edwin Alfonso Sosa

Ejercicio: Determine los números naturales, enteros, racionales e irracionales del siguiente conjunto. Dr. Edwin Alfonso Sosa

Ejercicio: Determine los números naturales, enteros, racionales e irracionales del siguiente conjunto. Dr. Edwin Alfonso Sosa

Orden Si el numero real a esta a la izquierda del numero real b sobre la recta numérica, entonces decimos que a es menor que b o de otra manera a < b. origen a b 1 2 3 -3 -2 -1 Dr. Edwin Alfonso Sosa

Distancia Si a o b son dos números reales tales que a ≤ b, entonces la distancia entre a y b es: (distancia entre a y b)= b - a -1 -2 -3 1 2 3 origen a b Ex: Determine la distancia entre -3 y -1 Distancia entre -3 y -1 = -1-(-3)=-1+3=2 determine la distancia entre 0 y 4 Distancia entre 0 y 3 = 3 - 0= 3 Dr. Edwin Alfonso Sosa

Ejercicios Ej. 5: Dibuje el siguiente conjunto en una recta numérica. {-1/2,3/4,5/3,7/2} -1 -2 -3 1 2 3 origen 4 -1/2 3/4 5/3 7/2 Dr. Edwin Alfonso Sosa

Ejercicios Diga si es verdadero o falso -2 < -1 -15 ≤ -20 -8 ≤ -(-4); 6 > -(-2) Todo numero racional es un entero. Todo numero entero es un numero racional. Algunos números racionales son irracionales. Algunos números racionales son enteros. Cierto. -2 esta a la izquierda de -1 Falso. -15 esta a la derecha de -20 Cierto. -8 ≤ 4 Cierto 6 > 2 F C F C Dr. Edwin Alfonso Sosa

Valor absoluto A la distancia entre un numero real a y 0 (el origen) se le llama valor absoluto de a. Un par de barras verticales sirven para indicar el valor absoluto. El valor absoluto de un numero real a se define como la distancia entre a y 0 sobre la recta numérica. Regla Si a ≥ 0 entonces |a|=a. ex: |3|=3 Si a < 0 entonces |a|=-a. ex: |-2|= -(-2)=2 Dr. Edwin Alfonso Sosa

Simplifique |3|= -|7|= |7-4|= -|-(5-1)|= 3 -7 3 - | -4 |= -4 Dr. Edwin Alfonso Sosa

Propiedades de la adición: signos iguales Suma de números reales Primer caso: signos iguales. Para sumar dos números con el mismo signo, deben sumarse sus valores absolutos. El signo de la suma (+ o -) es el mismo que el signo de los dos números. Ej. Para sumar -12 y -8, necesitamos sus valores absolutos |-12|=12 ; |-8|=8 Como ambos tienen signo negativo, usamos la regla anterior. Por lo tanto sumamos los valores absolutos: 12+8=20. Luego dé a la suma el signo de los dos números. Como ambos números son negativos la suma es negativa. -12 + (-8) = -20 Dr. Edwin Alfonso Sosa

Propiedades de la adición: signos diferentes Suma de números reales segundo caso: signos diferentes. Para sumar dos números con signo diferente debe restarse el valor absoluto mas pequeño del mas grande. La suma es positiva si el numero positivo tiene el valor absoluto mas grande. La suma es negativa si el numero negativo posee el valor absoluto mas grande. Ej. Para sumar -17 +11, necesitamos sus valores absolutos |-17|=17 ; |11|=11 Restando 17-11=6 De al resultado el signo del numero con mayor valor absoluto. Por lo tanto, será -6. Conclusión: -17+11= -6 Dr. Edwin Alfonso Sosa

Ejemplos (-6)+(-3)= - (6+3)=-9 (-12)+(-4)= -(12+4)=-16 4+(-1)=3 -9+16=7 -16+12=-4 Dr. Edwin Alfonso Sosa

Sustracción o diferencia de números reales Definición. Para todos los números reales a y b, a - b = a + (-b) O sea cambie el signo del segundo numero y sume. 6 – 8 = 6 + (-8) = -2 Cambie a suma y cambia el signo del segundo numero. Cambie a suma y busque el inverso aditivo. Dr. Edwin Alfonso Sosa

Ejemplos -12 – 4 = -12 + (- 4) = -16 10 – (-7) = -10 + 7= - 3 Cambia a suma Signo cambiado (inverso aditivo) 10 – (-7) = -10 + 7= - 3 Cuando se resuelve un problema con sumas y restas, las sumas y las restas se realizan en orden de izquierda a derecha. 15 – (-3) – 5 – 12 = 15 + 3 + (-5) + (-12) = = (15 + 3) + (-5) + (-12) = 18 + (-5) + (-12) = = (18 + (-5) ) + (-12) = = 13 + (-12) = 1 Dr. Edwin Alfonso Sosa

Multiplicación de números reales Razonamiento Inductivo 4 • 5 = 20 4 • 4 = 16 4 • 3 = 12 4 • 2 = 8 4 • 1 = 4 4 • 0 = 0 4 • (-1) = ? = -4 Dr. Edwin Alfonso Sosa

Multiplicación de números reales Razonamiento Inductivo 4 • (-1) = -4 4 • (-2) = -8 4 • (-3) = -12 4 • (-4) = -16 De la misma manera -4 • 2 = -8 -4 • 3 = -12 -4 • 4 = -16 Dr. Edwin Alfonso Sosa

Multiplicación de números reales Caso 1: signos iguales. Para multiplicar dos números con el mismo signo, multiplique sus valores absolutos. El producto es positivo. Caso 2 : signos diferentes. Para multiplicar dos números con signos diferentes, multiplique sus valores absolutos. El producto es negativo. Ejemplos - 9 • 7= -63 -14 • (-5) = 70 -8 • (-4) = 32 Dr. Edwin Alfonso Sosa

División de números reales El resultado que se consigue al dividir dos números reales se conoce con el nombre de cociente. Para números reales a, b y c, donde b ≠ 0, a/b= c significa que a=b • c. Para ilustrar esto, considere. Dr. Edwin Alfonso Sosa

División de números reales Signos iguales. Para dividir dos números con el mismo signo, deben dividirse sus valores absolutos. El cociente es positivo. Signos diferentes. Para dividir dos números con signos diferentes, hay que dividir sus valores absolutos. El cociente es negativo. Dr. Edwin Alfonso Sosa

División con cero DIVISION ENTRE 0 NO ESTA DEFINIDA Si 0 se divide entre un numero diferente de cero, el cociente es 0. Siempre que se realiza una división, queremos obtener un solo cociente. ¿Que numero multiplicado por cero resulta en 7? ¿Que numero multiplicado por cero resulta en 0? DIVISION ENTRE 0 NO ESTA DEFINIDA NINGUNO NUMERO INFINITO DE RESPUESTAS Dr. Edwin Alfonso Sosa

Exponentes enteros positivos Sea n un entero positivo y a un numero real. Entonces el producto de n factores de a esta dado por an= a • a • a … • a. Exponente BASE Dr. Edwin Alfonso Sosa

Ejemplo: Calculo de expresiones exponenciales Cuidado (-a )n ≠ -an (-3)4=(-3)(-3)(-3)(-3) = 81 -34= - (3)(3)(3)(3) = - 81 - (-3)4= - (-3)(-3)(-3)(-3) = - 81 Dr. Edwin Alfonso Sosa

Orden de las operaciones Si hay paréntesis o corchetes: Paso 1: Resuelva arriba y debajo de las rayas de fracciones por separado. Paso 2: Utilice las reglas siguientes dentro de cada conjunto de paréntesis o corchetes. Inicie con el conjunto mas interno y trabaje hacia fuera. Dr. Edwin Alfonso Sosa

Orden de las operaciones Si hay paréntesis o corchetes: Paso 1: Resuelva arriba y debajo de las rayas de fracciones por separado. Paso 2: Utilice las reglas siguientes dentro de cada conjunto de paréntesis o corchetes. Inicie con el conjunto mas interno y trabaje hacia fuera. Si no hay paréntesis o corchetes Paso 1: aplique todos los exponentes Paso 2: Haga las multiplicaciones o divisiones en el orden en que aparezcan, trabajando de izquierda a derecha. Paso 3: Haga las sumas y restas en el orden en que aparezcan, trabajando de izquierda a derecha. Dr. Edwin Alfonso Sosa

Propiedades de la suma y la multiplicación de números reales Para los números reales, a, b y c, se cumplen las siguientes propiedades. Propiedades de cierre Si a y b son números reales, entonces a + b y ab son números reales. Dr. Edwin Alfonso Sosa

Propiedades de la suma y la multiplicación de números reales Propiedades conmutativas a + b = b + a ab = ba Ej. 4 + (3 + 9) = 4 + (9 + 3) 4 + 12 = 4 + 12 16 = 16 4(5)=5(4)=20 Dr. Edwin Alfonso Sosa

Propiedades de la suma y la multiplicación de números reales Propiedades asociativas (a + b) + c = a + (b + c) (ab)c = a(bc) Ej. 5 + (6 + 8) = (5 + 6) + 8 (5•2)3 = 5(2•3)=30 Dr. Edwin Alfonso Sosa

Propiedades de la suma y la multiplicación de números reales Propiedades distributiva de la multiplicación con respecto a la suma a(b+c) = ab + ac (b+c)a = ba + ca Ej. 5(x + y) = 5x + 5y Dr. Edwin Alfonso Sosa

Propiedades de la suma y la multiplicación de números reales Propiedades de la identidad Existe un numero real 0 tal que a + 0 = a y 0 + a = a Existe un numero real 1, tal que a • 1= a y 1 • a = a Ej. 8 + 0 = 8 Dr. Edwin Alfonso Sosa

Propiedades de la suma y la multiplicación de números reales Propiedad del inverso aditivo: La suma de un numero real y su opuesto es cero. a + (-a) =0 Ej. 5 + (-5) =0 Propiedad del inverso multiplicativo: El producto de un numero real diferente de cero y su reciproco es 1. a • 1/a = 1, a ≠ 0 Dr. Edwin Alfonso Sosa

Ejercicios 6 + 9 = 9 + 6 7 + (2 + 5) = (7 + 2 ) + 5 Identifique la propiedad ilustrada en cada una de las siguientes proposiciones. 6 + 9 = 9 + 6 7 + (2 + 5) = (7 + 2 ) + 5 9 • 6 + 9 • 8 = 9 • (6 + 8) Conmutativa de la suma Asociativa de la suma distributiva Dr. Edwin Alfonso Sosa

Ejercicio b + 2 = 6 Ecuación dada (b + 2) + (-2) = 6 + (-2) Propiedad aditiva de Igualdad b + [2 + (-2)] =4 Propiedad asociativa de la suma b + 0 = 4 Propiedad del inverso aditivo b = 4 Propiedad de identidad aditiva Dr. Edwin Alfonso Sosa

Aplicaciones El record de temperatura mas alta , de 134˚F, en Estados Unidos fue registrado en el Valle de la Muerte, California, en 1913. El record de temperatura mas baja fue de – 80 ˚F en Prospect Creek, Alaska, en 1971. ¿Cual es la diferencia entre la temperatura mas alta y la mas baja? 134 – (-80) = 134 + 80 = 214 La diferencia es 214 ˚F Dr. Edwin Alfonso Sosa

Aplicaciones El área del rectángulo de la figura puede representarse de dos formas: como el área de un solo rectángulo, o como la suma de dos rectángulos. Encuentre el área de ambas formas. A1 A2 3 2 x Dr. Edwin Alfonso Sosa