Electricidad, electromagnetismo y medidas

Slides:



Advertisements
Presentaciones similares
TEMA 5 ELECTRICIDAD Y ELECTROMAGNETISMO
Advertisements

MAGNITUDES FUNDAMENTALES
Unidad Didáctica Electricidad, electromagnetismo y medidas
Electricidad Tecnología E.S.O. (Primer ciclo).
El circuito eléctrico Es el recorrido por el que circulan los electrones. Consta al menos de: un generador, un conductor, un interruptor y un receptor.
LA ELECTRICIDAD.
Parte II – Electrocinética Por: Ing. Nelson Velásquez
ELECTRICIDAD Y ELECTRÓNICA
ELECTRICIDAD Y ELECTRÓNICA Lucía López Rodríguez
Tecnología E.S.O. (Primer ciclo) ELECTRICIDAD.
ELECTRICIDAD Y ELECTRÒNICA
GENERALIDADES DEL CIRCUITO ELECTRICO.
Electricidad.
Electricidad.
LA CORRIENTE ELÉCTRICA
Eduardo Francisco Hernández Alarcón.
UNIVERSIDAD CATÓLICA SAN ANTONIO. MURCIA UNIVERSIDAD LA FLORIDA. CATARROJA, VALENCIA. 15 y 16 de mayo de 2003 TECNOLOGÍA 1º E.SO ELECTRICIDAD.
ELECTRICIDAD SANDRA MILENA DIAZ CASTRO R I ANESTESIOLOGIA
UNIDAD DIDÁCTICA – SEGUNDO PERIODO ( PERIODO 2)
Campo magnéticCampo magnético Inducción electromagnética Magnitudes y unidades SI.
Departamento de Tecnología
ELECTRICIDAD. Como se recordará, la materia está constituida por moléculas, que a su vez están constituidas por átomos. El átomo, lo forman un núcleo.
ELECTROMAGNETISMO (II) CAMPO MAGNÉTICO. Corriente eléctrica.
Electricidad Definición Circuitos eléctricos Magnitudes Ley de OHM Cálculo de resistencias en serie, paralelo y mixto. Potencia.
PPTCEL002FS11-A16V1 Clase Electricidad II: circuitos eléctricos.
Magnitudes básicas de un circuito eléctrico. MAGNITUDES ELÉCTRICAS Voltaje Tensión Diferencia de potencial (V) Intensidad (A) Resistencia (R) LEY DE OHM.
República Bolivariana de Venezuela La Universidad del Zulia Facultad de Ingeniería Núcleo Maracaibo Ciclo Básico Departamento de Física Asignatura: Laboratorio.
AMISTAD CON DIOS… “VUELVE AHORA EN AMISTAD CON EL, Y TENDRAS PAZ Y POR ELLO TE VENDRA BIEN” “VUELVE AHORA EN AMISTAD CON EL, Y TENDRAS PAZ Y POR ELLO TE.
Electrodinámica. La electrodinámica es la rama de la Física que estudia las cargas eléctricas en movimiento (corriente eléctrica).
Ley de Ohm Mientras mayor es la resistencia menor es la corriente y viceversa. Este fenómeno da como resultado la ley de Ohm.
Electrodinámica Potencia Eléctrica
ELECTRICIDAD QUE ES__MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF.
Corriente eléctrica e Intensidad de corriente
ELECTRICIDAD.
Intensidad de corriente eléctrica
FÍSICA II GRADO Ingeniería Mecánica Tema 3. Corriente eléctrica.
Electricidad y circuitos
Unidad 1: Electromagnetismo
Mediciones Electrónicas
Instalaciones eléctricas
3era.clase de Electricidad
RESISTENCIA ELÉCTRICA
EM2011 Serie de Problemas 01 -Problemas Fundamentales-
Profesor: José Manuel Retamal Morales
Instalaciones eléctricas
La ley de Ohm.
2da.clase de Electricidad
Magnitudes básicas de un circuito eléctrico.
5ta. Clase de Instalaciones Electricas
ELECTROMAGNETISMO.
El magnétismo.
TECNOLOGIA 3º ESO TEMA 5 ELECTRICIDAD Y ELECTROMAGNETISMO.
Conalep plantel Ing. Adrián Sada Treviño
CIRCUITO BASICO + _ FUENTE DE ENERGIA SWITCH RESISTENCIA CONDUCTOR VOLTAJE = FUERZA.
Instituto Nacional de Astrofísica, Óptica y Electrónica
Ley de Ohm Montoya..
Colegio Ntra. Sra. del Buen Consejo (Agustinas)
Establece una relación entre la diferencia de potencial (v) y la
LA ELECTRICIDAD Y SUS APLICACIONES
3º ESO Tema 5. CIRCUITOS ELÉCTRICOS..
CORRIENTE CONTINUA Unidad Contenidos (1) 1.-Carga eléctrica. Conservación.Carga eléctrica 2.-Corriente continua. Diferencia de potencial. Intensidad.Corriente.
Colegio Ntra. Sra. del Buen Consejo (Agustinas)
7.1 Corriente eléctrica y densidad de corriente. 7.2 Resistencia y ley de Ohm. 7.3 Energía en los circuitos eléctricos. 7.4 Asociación de resistencias.
CAMPO MAGNÉTICO.
Campo Eléctrico Campo Eléctrico en la materia Corriente Eléctrica
La adquieren los cuerpos
A D O T E C ELECTRICIDAD BÁSICA INTRODUCCIÓN.
CARGA Y CORRIENTE ELÉCTRICA
Colegio Ntra. Sra. del Buen Consejo (Agustinas)
Colegio Ntra. Sra. del Buen Consejo (Agustinas)
Transcripción de la presentación:

Electricidad, electromagnetismo y medidas

Corriente eléctrica Electrodomésticos Corriente continua Corriente alterna

Valores de la c.a. Valor máximo (Vmax): es el valor de cresta o pico, puede alcanzar hasta ± 325 V Valor instantáneo (Vi): Es el valor que toma la corriente en un momento determinado. Vi = Vmax * sen (ωt). Valor eficaz (Vef): Es el valor de corriente continua que produce el mismo efecto. Vef = Vmax / √2 Periodo (T): Es el tiempo que tarda en producirse un ciclo completo. La frecuencia (F): Es el número de ciclos que se producen en 1 segundo. F = 1/T

Magnitudes Eléctricas La carga eléctrica (q) de un cuerpo expresa el exceso o defecto de electrones que hay en sus átomos. Su unidad es el Culombio (C). 1 Culombio equivale a 6,25 x1018 electrones. La intensidad (I), es la cantidad de carga eléctrica que circula por un conductor en una unidad de tiempo. I = q /t Amperios = Culombios /segundo Para que los electrones se desplacen por un conductor es necesaria una diferencia de potencial o fuerza electromotriz (V) entre sus extremos. Su unidad es el Voltio. La resistencia (R), es la dificultad que opone un cuerpo al paso de los electrones. Su unidad es el Ohmio (Ω), Donde: R es el valor de la resistencia en ohmios () es la resistividad del material ( ) L la longitud del elemento. S la sección del elemento.

Resistividad de materiales Unidades Plata 0,01 Cobre 0,0172 Oro 0,024 Aluminio 0,0283 Hierro 0,1 Estaño 0,139 Mercurio 0,942 Madera De 108 x 106 a 1.014 x 106 Vidrio 1.010.000.000

Ley de Ohm Ejemplo: Ejemplo de c.a.: La Intensidad que circula por un circuito es proporcional a la tensión que aplicamos en él e inversamente proporcional a la resistencia que opone a dicha corriente. Esto se expresa con la fórmula: Ejemplo: Ejemplo de c.a.:

Potencia eléctrica La potencia eléctrica que puede desarrollar un receptor eléctrico se puede calcular con la fórmula: Donde: P es la potencia en vatios (W). V es el voltaje (V). I es la intensidad (A). La potencia en corriente alterna es: Otra forma de expresarlo: Más formas de expresarlo: Donde la potencia depende del voltaje al cuadrado y de la inversa de la resistencia del receptor. Donde la potencia depende de la corriente al cuadrado que circula por el receptor y de la resistencia.

Energía eléctrica Cuando tenemos el receptor conectado durante un tiempo lo que necesitamos conocer es la energía que consume. Donde: E es la energía en Julios (J). P es la potencia en vatios (W). t es el tiempo en segundos (s). La energía se suele expresar en KW·h

Circuito serie Se caracteriza por: La resistencia total del circuito es la suma de las resistencias que lo componen. La corriente que circula es la misma por todos los elementos. La fuerza electromotriz generada por el generador se reparte entre los distintos elementos.

Circuito paralelo Se caracteriza por: La inversa de la resistencia total del circuito es la suma de las inversas de las resistencias que lo componen. Otra forma de expresar la resistencia total cuando son dos los elementos es: La corriente total que sale del generador se reparte por todos los elementos. La fuerza electromotriz generada por el generador llega por igual a todos los elementos.

Circuito mixto

Introducción al electromagnetismo Propiedades de los materiales magnéticos: 1.- Atraen al hierro, y otros metales como cobalto, níquel y sus aleaciones. 2.- Orientan sus moléculas en la misma dirección. 3.- Crean dos polos opuestos en sus extremos, y de ellos salen líneas de fuerza que van de uno al otro.

Propiedades de los materiales magnéticos 4.- Cuando enfrentamos dos polos de distinto tipo se atraen. 5.- Cuando enfrentamos dos polos del mismo tipo se repelen. 6.- Los polos norte y sur no se pueden separar. Si se parte un trozo del material, cada trozo vuelve a ser un imán con polo norte y sur. 7.- Sus propiedades atraviesan objetos como papel, madera, plásticos, etc. 8.- Si frotamos un objeto de acero con un imán, el objeto adquiere las propiedades magnéticas del imán y se comporta como tal.

Propiedades de los materiales magnéticos Los imanes tienen un campo magnético que los rodea, es muy fácil observarlo si dejamos limaduras de hierro cerca del imán que se sitúan sobre las líneas de fuerza del mismo. Hace más de dos mil quinientos años, los chinos ya conocían estas propiedades y crearon la primera brújula al concebir la tierra como un enorme imán.

Electromagnetismo La corriente genera campo magnético El campo magnético genera corriente eléctrica

Aplicaciones, electroimán

Aplicaciones, relé Símbolos de relés

Aplicaciones, alternador símbolo

Aplicaciones, dinamo y motor de corriente continua símbolos

Aplicaciones, transformador P1 = P2 V1 * I1 = V2 *I2 V1 / V2 = I2 / I1 = m (relación de transformación). N1 / N2 = V1 / V2 = m (relación de transformación).

Aparatos de medida Óhmetro Voltímetro Amperímetro conexionado

Polímetro, multímetro, tester

GRACIAS POR SU ATENCION