Conjunt de reaccions químiques que tenen lloc dins de la cèl.lula METABOLISME Conjunt de reaccions químiques que tenen lloc dins de la cèl.lula
Metabolisme CATABOLISME reaccions que transformen molècules complexes en altres més senzilles, alliberant energia ANABOLISME reaccions que transformen molècules senzilles en altres més complexes, requerixen energia
CARACTERÍSTIQUES DE LES REACCIONS QUÍMIQUES 1. Les reaccions químiques s’organitzen en rutes (unes a continuació de les altres) de forma que els productes d’una són els substrats de l’altra 2. En moltes reaccions hi ha un pas d’electrons d’uns àtoms o molècules a altres reaccions oxidació-reducció (redox)
3. L’alliberament o consum d’energia està acoplat a la sintesi o hidròlisi (trencament) d’una molècula anomenada ATP. L’E captada pels éssers vius (autòtrofs o heteròtrofs) NO s’utilitza directament s’emmagatzema en forma d’ATP
4. Per a que una reacció tinga lloc s’han de activar els substrats, és a dir, hi ha que donar-los energia energia d’activació. Hi han unes substàncies que faciliten que es done la reacció perquè disminuixen l’E d’activació catalitzadors = ENZIMS ACCELEREN LES REACCIONS
Cóm actuen els enzims? L’EZ s’unix temporalment de forma específica al seu substrat (substrat+asa) formant el complex EZ-substrat. El lloc de l’EZ on s’uneix el substrat s’anomena centre actiu: hi han uns aa que formen el complex i altres que transformen el substrat en producte Moltes reaccions són reversibles aleshores és el mateix EZ el que catalitza la reacció tant en un sentit com en l’altre
Hi ha 2 models sobre la forma en que el substrat s’uneix al centre actiu: Model de clau-pany la estructura del centre actiu i del substrat són complementàries (encaixen) Model d’ajust induït el centre actiu adopta la conformació correcta sols quan s’uneix al substrat
Propietats dels EZ Són proteïnes, encara que alguns s’unixen a un altre component no proteic Són específiques No es consumeixen Són molt eficients fa falta molt poca quantitat Es desnaturalitzen amb canvis de Tª o de pH
Efecte del pH Efecte de la temperatura
Les reaccions catalitzades per EZ solen presentar una cinètica hiperbòlica,
Aquesta gràfica es descriu matemàticament amb l’eq de Michaelis –Menten On la Km es la concentració de substrat a la que la velocitat de reacció és la meitat de la V max.
Com que la extrapolació dels valors de Km i Vmax a partir d’una corba hiperbòlica és poc exacta, s’ha modificat l’eq de Michaelis-Menten per a que done lloc a una representació lineal: DOBLES INVERSOS
Inhibició enzimàtica
L’inhibidor pot ser: Irreversible s’uneix irreversiblement (verí) Reversible s’uneix temporalment Competitius si l’inhibidor té una forma pareguda a la del substrat i per tant competeixen per unir-se al mateix lloc No competitius si l’inhibidor s’unix a un lloc diferent del substrat, però al unir-se dificulta la unió del substrat Molts antibiòtics i insecticides són inhibidors irreversibles
Enzims reguladors: alostèrics
- Activador canvia la forma T a R Els EZ al.lostèrics es poden presentar en 2 formes: forma R (relaxada) activa en la que es pot unir el substrat i forma T (tensa) inactiva en la que no es pot unir el substrat. Tenen un o més centres reguladors, diferents del lloc d’unió del substrat (centre actiu). El compost que s’uneix al centre regulador s’anomena MODULADOR, aquest pot ser: - Activador canvia la forma T a R - Inhibidor canvia la forma R a T És típic en la retroinhibició (feed-back) http://www.bionova.org.es/animbio/anim/feedback.swf
Els EZ al.lostèrics tenen una cinètica que segueixen una corba sigmoide
Holoenzims EZ que per a realitzar la seua funció necesiten a més del component protèic un altre NO protèic: Part protèica = APOENZIM Part NO protèica = COFACTOR El cofactor pot ser un ió inorgànic (Mg, Fe,…) O pot ser un compost orgànic, que s’anomenarà: Grup prostètic si s’unix covalentment a la proteïna Coenzim si s’unix NO covalentment
Els COENZIMS més importants són: Adenosín-fosfats ATP,ADP,AMP Flavín-nucleòtids FMN i FAD participen en reaccions redox Pirimidín-nucleòtids NAD i NADP tanbé participen en reaccions redox Coenzim A capta i transferix grups acètics
Transport de membrana
Molècules xicotetes Transport passiu a favor de gradient, des d’on hi ha més cap a on hi ha menys NO requerix E Difussió simple molec hidrofòbiques (O2,CO2, N2), sense càrrega o càrrega neutra (urea, aigua) Difussió facilitada molec carregades, es fa mitjançant proteínes de membrana: de canal o transportadores Transport actiu en contra de gradient des d’on hi ha menys cap on hi ha més prot que actuen com bombes requerixen E
Molècules grans Endocitosi (de fora a dins) es forma una invaginació de la memb i la substància a transportar queda dins d’una vesícula Pinocitosi si és un líquid o una partícula molt menuda Fagocitosi partícula gran
Exocitosi (de dins cap a fora) S’anomena transocitosi si travessa completament la cèl.lula (1º endocitosi i 2º exocitosi)
ANABOLISME FOTOSÍNTESI E llum E química (ATP i NAPDH) aigua compostos CO2 + sals minerals orgànics + O2 senzills (glc,aa) (sucres i compostos midó) complexos
1. Fase lluminosa (en presència de llum) L’E de la llum es captada pels pigments fotosintètics i transformada en E química (ATP i NADPH) Clorofil.la Carotenoides Ficobilines
Els pigments s’agrupen formant fotosistemes (PS) que es troben a la memb del tilacoide (PSII (680) i PSI (700)) Complexe antena centenars de pigments units que + dirigixen l’E cap a centre de reacció clorofil.la (s’excita i transferix e-) + acceptors d’e-
2 e- que passen pel complex b-f 2H+ 3H+ 1 ATP
Transport cíclic
Factors que influixen a la fotosíntesi 1) [CO2] si la llum és constant a més CO2 més intensitat en la fotosíntesi, ja que més es fixará al C. Calvin
2) AL augmentar la intensitat de llum augmenta la fotosíntesi, però fins a un limit en que es podrien desnaturalitzar els EZ que intervenen 3) [O2] a major concentració d’O2 menor serà la intensitat fotosintètica degut a que es produirà fotorrespiració
En plantes tropicals, per evitar la pèrdua d’aigua, les plantes tanquen els estomes augmente la [O2] dins Problema El enzim RUBISCO que catalitza la fixació del CO2 en el C.Calvin, si la [O2] és alta deixa de catalitzar aquesta reacció (s’atura el C.Calvin) i comença a fer una reacció anomenada FOTORRESPIRACIÓ Si [CO2] > [O2] fixa CO2 al C. Calvin RUBISCO Si [O2] > [CO2] fa la fotorrespiració
SOLUCIÓ tenen un sistema per el qual capten molta quantitat de CO2 mentre els estomes estan oberts i l’emmagatzemen en forma de diferents compostos. Quan el necesiten per a que no ocorrega la fotorrespiració transformen estos compostos altra volta en CO2
4) Temperatura: A la fase lluminosa no li influix A la fase obscura a més temperatura més intensitat fotosintètica, sempre que no arrivem a desnaturalitzar els EZ.
Tipus de fotosintesi Fotosíntesi oxigènica el dador d’e- és l’aigua i es genera O2 Fotosíntesi anoxigènica el dador d’e- és un compost inorgànic com el H2S o el lactat
Altre procés anabòlic: Quimiosintesi Subst. Inorg subst. Org E de reaccions químiques - nitrit nitrat - sulfur sulfat - Fe+2 Fe +3
CATABOLISME RESPIRACIÓ La degradació de qualsevol biomolecula pot suministrar energia; l’elecció no depén tant de la seua capacitat energètica com de la facilitat que supose la seua utilització La molecula més emprada és la glucosa GLICOLISI
Degradació aliments Reserves de cel GLUCOSA C Degradació aliments Reserves de cel GLUCOSA C.Calvin 2 ATP FASE PREPARATORIA 2 ADP 2 G3P 2 NAD+ + 4 ADP 2 NADPH + 4 ATP 2 piruvat BALANÇ: 1 glucosa 2 piruvats + 2 ATP + 2 NADPH
Per a que la glicolisi continue el NAD+ s’ha de regenerar Per a açò el pirutvat s’haurà de degradar per diferents camins, segons la disponibilitat de oxígen: En condicions aeròbies respiració aeròbia En concicions anaeròbies fermentacions
RESPIRACIÓ AEROBIA 1. Formació de 2 piruvat Acetil-CoA 2 NAD+ 2 NADH 2 Acetil-CoA BALANÇ: 2. C. Krebs 2 Acetil-CoA 4 CO2 6 NADH 2 FADH2 2 ATP
3. Totes les molècules de poder reductor (NADH i FADH2) generades en la glicolisi i a les 2 primeres fases de la respiració aeròbia s’oxidaran (es transformaran en NAD+ i FADH+) gràcies a la cadena de transport d’e-
FERMENTACIONS (cond anaeròbies i normalment en microrganismes) Fermentació alcohòlica Piruvat etanol 2 NAD+ Fermentació làctica Piruvat àcid làctic