Expresiones Algebraicas

Slides:



Advertisements
Presentaciones similares
EXPRESIONES ALGEBRAICAS
Advertisements

POLINOMIOS.
Expresiones Algebraicas
1. EXPRESIONES ALGEBRÁICAS Y POLINOMIOS. internet
Expresiones Algebraicas
EXPRESIONES ALGEBRÁICAS Y POLINOMIOS. internet
REGLA DE RUFFINI DÍA 11 * 1º BAD CS
Expresiones Algebraicas
POLINOMIOS.
EXPRESIONES ALGEBRAICAS
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 2 ECUACIONES Y SISTEMAS.
DIVISIÓN DE POLINOMIOS
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 3 EXPRESIONES ALGEBRAICAS.
POLINOMIOS TEMA 2 * 4º ESO Opc Angel Prieto Benito
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 TEMA 4 * 3º ESO Polinomios.
Expresiones Algebraicas
DIVISIÓN DE EXPRESIONES ALGEBRAICAS
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 U.D. 4 * 3º ESO E.AC. Polinomios.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 U.D. 5 * 3º ESO E.Ap. Polinomios.
OPERACIÒNES ALGEBRAICAS.  Una expresión algebraica es un conjunto de cantidades numéricas y literales relacionadas entre sí­ por los signos de las operaciones.
FUNDAMENTOS DE MATEMATICAS Una expresión algebraica es una expresión en la que se relacionan valores indeterminados con constantes y cifras, todas ellas.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 3 * 4º ESO E. AC. POLINOMIOS.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 3 * 4º ESO E. AC. POLINOMIOS.
Tema 1. Números Reales y Polinomios. Números Reales Se dividen en: ➢ Números Racionales. ➢ Números Irracionales.
UNIDAD 1 OPERACIONES CON EXPRESIONES RACIONALES. 1.2 Factorización.
Algebra lineal Raíces de un polinomio. Polinomio  En matemáticas, se denomina polinomio a la suma de varios monomios (llamados términos del polinomio).
Clase 4 y 5 : Generalidades y multiplicación de polinomios.
1 Expresiones Algebraicas Una expresión algebraica es una expresión en la que se relacionan valores indeterminados con constantes y cifras, todas ellas.
Propiedad Intelectual Cpech Álgebra Álgebra. Propiedad Intelectual Cpech APRENDIZAJES ESPERADOS Utilizar conceptos matemáticos asociados al estudio del.
EXPRESIONES ALGEBRAICAS
ECUACIONES U. D. 4 * 4º ESO E. Angel Prieto Benito
Jennifer Morales Clarke 2º Bach. A
Exponentes Racionales y Radicales
Polinomios y Fracciones algebraicas
OPERACIONES CON POLINOMIOS
Índice Algebra operativa.
Apuntes de Matemáticas 2º ESO
Matemáticas 1º Bachillerato CT
TEMA 6: DIVISIÓN DE POLINOMIOS
Matemáticas 1º Bachillerato CT
Apuntes de Matemáticas 2º ESO
POLINOMIOS U. D. 5 * 4º ESO E. Angel Prieto Benito
Apuntes de Matemáticas 2º ESO
POLINOMIOS U. D. 5 * 4º ESO E. Angel Prieto Benito
El poder generalizador de los SIMBOLOS
ÁLGEBRA ) ÁLGEBRA El lenguaje que utiliza letras en combinación con números y signos, y además las trata como números en operaciones y propiedades,
POLINOMIOS U. D. 5 * 4º ESO E. Angel Prieto Benito
Apuntes de Matemáticas 3º ESO
ÁLGEBRA ) ÁLGEBRA El lenguaje que utiliza letras en combinación con números y signos, y además las trata como números en operaciones y propiedades,
Factorizaciones y productos
EL ÁLGEBRA.
Cociente de un polinomio entre un monomio Para dividir un polinomio entre un monomio, dividimos cada término del polinomio entre el monomio. Ej:
DOCENTE: ANGEL PALACIO BIENVENIDOS AL MUNDO DEL
ÁLGEBRA y El poder generalizador de los SIMBOLOS.
UNIDAD 4 OPERACIONES CON POLINOMIOS. MAPA DE NAVEGACIÓN Operaciones con Polinomios Índice Objetivo General Ejemplos Objetivo 1 Objetivo 2 Objetivo 4 Objetivo.
1 Expresiones Algebraicas Una expresión algebraica es una expresión en la que se relacionan valores indeterminados con constantes y cifras, todas ellas.
ÁLGEBRA. DEFINICIÓN DE ÁLGEBRA El Álgebra es una rama de las matemáticas que emplea números, letras y signos para hacer referencia a las distintas operaciones.
LOS NUMEROS. NUMEROS ENTEROS Por muchos, muchos años en tiempos pasados, hasta los más famosos matemáticos en Europa se negaron a aceptar la existencia.
El poder generalizador de los SIMBOLOS
POLINOMIOS p(x) = p0 + p1x + p2x2 + p3x3 + … + pnxn pn ≠ 0
ÁLGEBRA ) ÁLGEBRA El lenguaje que utiliza letras en combinación con números y signos, y además las trata como números en operaciones y propiedades,
Polinomios.
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BTO A
Expresiones algebraicas. Polinomios. Grado de un polinomio
LOS NUMEROS. NUMEROS ENTEROS Por muchos, muchos años en tiempos pasados, hasta los más famosos matemáticos en Europa se negaron a aceptar la existencia.
DIFERENCIA DE CUADRADOS
Lenguaje Algebraico. Término Algebraico Es una combinación de letras, números y signos de operaciones. Ejemplo: 3b² Para escribir una Término algebraica.
1 Radicales Definición del concepto Vocabulario Propiedades de los radicales Simplificar expresiones con radicales Operaciones con radicales Resolver ecuaciones.
ÁLGEBRA ) ÁLGEBRA El lenguaje que utiliza letras en combinación con números y signos, y además las trata como números en operaciones y propiedades,
Los polinomios son una parte importante del Álgebra. Están presentes en todos los contextos científicos y tecnológicos: desde los ordenadores y la informática.
Transcripción de la presentación:

Expresiones Algebraicas Una expresión algebraica es una expresión en la que se relacionan valores indeterminados con constantes y cifras, todas ellas ligadas por un número finito de operaciones de suma, resta, producto, cociente, potencia y raíz. Ejemplos

Tipos de Expresiones Algebraicas Racionales Irracionales Enteras Fraccionarias

Expresión Algebraica Racional Es racional cuando las variables no están afectadas por la radicación Ejemplo

Expresión Algebraica Irracional Es irracional cuando las variables están afectadas por la radicación Ejemplo

Expr.Algebraica Racional Entera Una expresión algebraicas es racional entera cuando la indeterminada está afectada sólo por operaciones de suma, resta, multiplicación y potencia natural. Ejemplo

Expresión Algebraica Racional Fraccionaria Una expresión algebraicas racional es fraccionaria cuando la indeterminada aparece en algún denominador. Ejemplo

Polinomios a0 + a1 x + a2 x2 + … + an xn Son las expresiones algebraicas más usadas. Sean a0, a1, a2, …, an números reales y n un número natural, llamaremos polinomio en indeterminada x a toda expresión algebraica entera de la forma: a0 + a1 x + a2 x2 + … + an xn

Ejemplos de polinomios A los polinomios en indeterminada x los simbolizaremos con letras mayúsculas indicando la indeterminada entre paréntesis: P(x) ; Q(x) ; T(x).

Términos Monomio : polinomio con un solo término. Binomio : polinomio con dos términos. Trinomio : polinomio con tres términos. Cada monomio aixi se llama término. El polinomio será de grado n si el término de mayor grado es anxn con an0. A a0 se lo llama término independiente. A an se lo llama término principal.

Ejemplos El polinomio 0 + 0x + 0x2 + … +0xn se llama polinomio nulo. Lo simbolizaremos por Op(x). No se le asigna grado.

Ejercicio Indicar cuáles de las siguientes expresiones algebraicas son polinomios. En este último caso indicar su grado.

Polinomios iguales Dos polinomios son iguales si y sólo si los coeficientes de los términos de igual grado lo son. Ejercicio: Determinar a, b y c para que P(x)=Q(x)

Suma de Polinomios Para sumar dos polinomios se agrupan los términos del mismo grado y se suman sus coeficientes. Ejemplo: Sumar los siguientes polinomios P(x) = -2x4 + 5x3 – 3x + 1 Q(x) = 3x3 – 6x2 – 5x - 2

Propiedades de la Suma Asociativa Conmutativa Existencia de elemento neutro Existencia de elemento opuesto

Resta de Polinomios Para restar el polinomio Q(x) del polinomio P(x) se debe sumar a P(x) el opuesto de Q(x). P(x) – Q(x) = P(x) + [ - Q(x) ] Ejemplo: Restar los siguientes polinomios P(x) = -2x4 + 5x3 – 3x + 1 Q(x) = 3x3 – 6x2 – 5x - 2

Multiplicación de Polinomios Para multiplicar dos polinomios se multiplica cada monomio de uno de ellos por cada uno de los términos del otro y luego se suman los términos de igual grado. Ejemplo: Multiplicar los siguientes polinomios P(x) = -2x4 + 5x3 – 3x + 1 Q(x) = 3x3 – 6x2 – 5x – 2 P(x).Q(x) = P(x) 3x3 + P(x) (-6x2 ) + P(x) (-5x ) + P(x)(-2)

Propiedades del Producto Asociativa Conmutativa Existencia de elemento neutro.

Algunos productos importantes (x+a)2 =(x+a)(x+a)= x2 + 2ax + a2 (x-a)2 =(x-a)(x-a)= x2 - 2ax + a2 (x+a)3 = x3 + 3ax2 + 3a2x + a3 (x-a)3 = x3 - 3ax2 + 3a2x - a3 (x+a)(x-a)= x2 –ax +ax-a2 = x2-a2

Ejercicio Escribir los desarrollos de

Ejercicio: Expresar los siguientes trinomios cuadrados perfectos como el cuadrado de un binomio y a los cuatrinomios cubos perfectos como el cubo de un binomio.

Ejercicio: La expresión x2 - a2 es una diferencia de cuadrados Ejercicio: La expresión x2 - a2 es una diferencia de cuadrados. Escribir las siguientes diferencias como producto de binomios.

División de polinomios Existe una estrecha analogía entre el cociente de polinomios y la división de números enteros. Recordemos algunas definiciones de la división entre números enteros.

División entre números enteros En el conjunto de números enteros, si D es el dividendo y d0 es el divisor, existen y son únicos dos enteros c (cociente) y (r (resto) tales que D = d . C + r 0 ≤ r < |d| Si r=0 se dice que D es divisible por d.

División entre números enteros Ejemplo: Realizar las siguientes divisiones enteras: 29 dividido 6 será: c= 4 y r=5 pues 29 = 6 . 4 + 5 y 0 ≤ 5 < 6 29 dividido -6 será: c= -4 y r=5 pues 29 = (-6) . (-4) + 5 y 0 ≤ 5 < |-6| ¿Podría haber sido c = -5 y r = -1?

División de polinomios Dados los polinomios D(x) = 6x3 – 17x2+15x-8 d(x) = 3x – 4 determinar, si es posible, dos polinomios c(x) y r(x) tales que D(x) = d(x). C(x) + r(x) de modo que el grado de r(x) sea menor que el grado de d(x) o bien r(x)=Op(x)

Ejemplo 6x3-17x2+15x-8 = (3x-4)(2x2-3x+1)-4 + 1 0x3 - 9x2+ 15x 9x2- 12x 0x2+ 3x - 8 -3x + 4 0x - 4 6x3-17x2+15x-8 = (3x-4)(2x2-3x+1)-4

Ejercicios D(x) = 4x5 + 2x3 – 24x2 + 18x d(x) = x2 – 3x

División de Polinomios Dados los polinomios D(x) y d(x); d(x)Op(x), diremos que d(x) divide a D(x) si y sólo si existe un polinomio c(x) tal que D(x) = d(x) . c(x)

Ejercicios Dados los polinomios P(x) y Q(x) indica si alguno de ellos es divisible por el otro P(x) = x4 -2x3 +x2 -5x + 1 Q(x) = x3 + x2 + x + 1 P(x) = x4 +2x3 +4x2 + 8x +16 Q(x) = x5 - 32

División de un polinomio por otro de la forma (x-a) 3x3 – 2x2 – 5x – 9 x – 2 - 3x3 + 6x2 3x2 + 4x + 3 4x2 – 5x - 4x2 + 8x 3x – 9 -3x + 6 -3 Regla de Ruffini 3 -2 -5 -9 2 6 8 6 -3 3 4 3 3x3 – 2x2 – 5x – 9 = ( x – 2)(3x2 + 4x + 3) + (-3)

División de un polinomio por otro de la forma (x-a) División de P(x) = 3x3 – 2x2 – 5x – 9 por (x-2) realizada por la Regla de Ruffini 3 -2 -5 -9 2 6 8 6 3 4 3 -3 1º operación : 3.2 -2 = 4 2º operación : (3.2 -2).2 - 5 = 3 3º operación : [3(2) 2 – 2 . 2 - 5].2 -9 =-3 Por lo tanto 3.(2)2 -2.(2)2 -5.2 -9 = -3

Raíces de un polinomio Un número real a es raíz de un polinomio P(x) si y solo si P(a) = 0 Ejercicio: Verifique que x=1 es raíz del polinomio P(x) = 3x2 + 2x – 5

Raíces de un Polinomio Si un polinomio tiene coeficientes enteros y a es una raíz entera del polinomio entonces a divide al término independiente. Ejercicio: Calcular las raíces de P(x) = 2x3 - 2x2 - 16x + 24

Ejercicio: Calcular las raíces de P(x) = 2x3 - 2x2 - 16x + 24 Si P(x) tiene alguna raíz entera, ésta debe ser divisor de 24. Probar que 1 y -1 no son raíces de P(x) Ver x=2 también es raíz de 2x2 + 2x -12 2x2 + 2x -12 = (x-2)(2x+6) 2x3 – 2x2 – 16x + 24 = ( x – 2)(2x2 + 2x -12)

Ejercicio Calcular las raíces de P(x) = x4 - x3 - 6x2 + 4x + 8

Resolver la siguiente ecuación

Soluciones de la Ecuación Fraccionaria