Curso de Estabilidad IIb Ing. Gabriel Pujol

Slides:



Advertisements
Presentaciones similares
Estado plano de tensiones
Advertisements

ÁREAS Y PERÍMETROS DE LAS FIGURAS ELEMENTALES TRIÁNGULO CUADRADO RECTÁNGULO ROMBO TRAPECIO CIRCUNFERENCIA CÍRCULO.
FÍSICA I.
ENSAYO DE TRACCION. OBJETIVOS ing. metalurgica. Poma Leon, Antonio Joel
INSTITUTO TECNOLÓGICO SUPERIOR DE LIBRES INGENIERÍA EN GESTIÓN EMPRESARIAL FINANZAS ING. FRANCISCO HERNÁNDEZ QUINTO ERIKA HERNÁNDEZ DÍAZ JOSÉ ALBERTO DE.
Estados de Deformación Resolución Gráfica Circunferencia de Mohr
Curso de Estabilidad IIb Ing. Gabriel Pujol
Estados Planos de Tensión Circunferencia de Mohr
DIMENSIONES ¿Por cuántos puntos está limitado un segmento? Correcto: 2. ¿Por cuántas segmentos está limitado un cuadrado? Correcto: 4. ¿Por cuántas cuadrados.
FLEXIÓN DE BARRAS CURVAS
Diagrama de Características Determinación Gráfica
Geometría de Masas Circunferencia de Mohr- Land
Curso de Estabilidad IIb Ing. Gabriel Pujol
Geometría de Masas Resolución Ejercicio N° 3
EQUIVALENCIAS Dos figuras son equivalentes cuando tienen la misma superficie.
Circunferencia de Mohr Problemas de Aplicación
FALLAMIENTO PLANO CURSO: GEOTECNIA MINERA DEPTO DE INGENIERIA DE MINAS
Universidad de Sonsonate
Álgebra y Modelos Analíticos Prof. Margarita Farias N 3° E.M.
MEDIDA DE LONGITUDES U. D. 8 * 4º ESO E. Angel Prieto Benito
Curso de Estabilidad IIb Ing. Gabriel Pujol
Torsión Ejercicio N° 1 de la Guía de Problemas Propuestos
Solicitación Axil Resolución del Problema N° 16
Solicitación Axil Ejercicio N° 27 de la Guía de Problemas Propuestos
Curso de Estabilidad IIb Ing. Gabriel Pujol
Curso de Estabilidad IIb Ing. Gabriel Pujol
Estados Triaxiales de Tensión Circunferencia de Mohr
Curso de Estabilidad IIb Ing. Gabriel Pujol
Deformaciones en la Flexión Diagrama de Momentos Reducidos
Ensayes de resistencia al corte del suelo Corte directo
EXAMENES LOGSE Septiembre
Curso de Estabilidad IIb Ing. Gabriel Pujol
Curso de Estabilidad IIb Ing. Gabriel Pujol
Curso de Estabilidad IIb Ing. Gabriel Pujol
Torsión Sección Circular Maciza vs. Sección Cuadrada Maciza
Curso de Estabilidad IIb Ing. Gabriel Pujol
Flexión y Corte Teoría de Jouravski
Curso de Estabilidad IIb Ing. Gabriel Pujol
4 dimensiones ¿Por cuántos puntos está limitado un segmento? Correcto: 2. ¿Por cuántas segmentos está limitado un cuadrado? Correcto: 4. ¿Por cuántas cuadrados.
Curso de Estabilidad IIb Ing. Gabriel Pujol
Ing. Jorge Luis Paredes Estacio
Curso de Estabilidad IIb Ing. Gabriel Pujol
Curso de Estabilidad IIb Ing. Gabriel Pujol
Curso de Estabilidad IIb Ing. Gabriel Pujol
LAS MATEMÁTICAS ÁREAS DE FIGURAS GEOMÉTRICAS “ CUADRADO, RECTÁNGULO, TRIÁNGULO Y EL ROMBO.
Trazados fundamentales en el plano
Curso: Sistemas de Control Industrial II Alumno :  Vega Banda Alexis Aldair Docente: Dr. Quispe Rojas Julio Ernesto UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO”
EXAMENES PAU JULIO Fase Especifica
Curso de Estabilidad IIb Ing. Gabriel Pujol
INGENIERÍA DE PRODUCTO 1.2 Círculo de Mohr.. El círculo de Mohr es una gráfica de las combinaciones de los esfuerzos normal y cortante que existen en.
UNIVERSIDAD LATINOAMERICANA CIMA FACULTAD DE INGENIERÍA AMBIENTAL.
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
UNIVERSIDAD NACIONAL DE PIURA CURSO: MECANICA DE SUELOS II DOCENTE: MSc. ING. ANTONIO TIMANA FIESTAS. PIURA, ENERO DE 2017.
1 Introducción a la RESISTENCIA DE MATERIALES UNIVERSIDAD NACIONAL DEL CENTRO DEL PERU Facultad de Ciencias Aplicadas Escuela Académica profesional de.
EXAMENES PAU 2005.
UNIVERSIDAD CESAR VALLEJO ESCUELA PROFESIONAL DE INGENIERÍA CIVIL CURSO: Mecánica de fluidos I DOCENTE: Mg.TC. Ing. Carlos A. Loayza Rivas TEMA: Dinámica.
TEMA: Conceptos de resistencia de materiales. DOCENTE: Ing. Maximo Huambachano Martel. ASIGNATURA: Resistencia de Materiales. ALUMNO : José paucar sarango.
Transferencia de Momento Lineal Mecánica De Los Fluidos Propiedades de Los Fluidos.
UNIVERSIDAD LAICA ELOY ALFARO DE MANABI CARRERA: ING MECANICA NAVAL. ASIGNATURA: DISEÑO DE ELEMENTOS DE MAQUINAS.
Clase 12: Elementos de pared delgada y Columnas
Geometría de Masas Resolución Ejercicio N° 7
Examen parcial (M1 y M2): Aula: :15 FÍSICA II GRADO
Examen parcial (M1 y M2): Aula: :15 FÍSICA II GRADO
Mecánica De Los Fluidos Capítulo 1. Propiedades de Los Fluidos Año 2011.
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL UNIVERSIDAD ALAS PERUANAS ESTÁTICA (Ejercicios resueltos) DOCENTE: Ing. BERROCAL.
ÁREAS SOMBREADAS. ELEMENTOS DE UNA CIRCUNFERENCIA.
Moquegua – Perú 2019 UNIVERSIDAD NACIONAL DE MOQUEGUA ESCUELA PROFESIONAL DE INGENIERIA DE MINAS MECANICA DE ROCAS ESPECIALES. Mg. Ing. Víctor Adrián Ponce.
ELASTICIDAD SEMANA 01 INGENIERIA INDUSTRIAL DOCENTE: ING. JOHN W. CHARCA CONDORI UNIVERSIDAD AUTONOMA SAN FRANCISCO.
Transcripción de la presentación:

Curso de Estabilidad IIb Ing. Gabriel Pujol Estados de Tensión y Deformación Relación entre las constantes E, G y . Curso de Estabilidad IIb Ing. Gabriel Pujol Para las carreas de Ingeniería Mecánica e Ingeniería Naval y Mecánica de la Facultad de Ingeniería de la Universidad de Buenos Aires

son estados tensionales equivalentes: Desarrollo Dado el sistema plano de tensiones que se indica, determinar la relación entre las constantes E; G y : tMax P ≡ A O ≡ C B sI sIII sII = 0 … veamos la circunferencia de Mohr: … esta circunferencia coincide con la circunferencia para el estado de corte puro con planos inclinados a 45°: son estados tensionales equivalentes: … donde: tMin Veamos el siguiente enunciado:

Esta equivalencia nos permitirá hallar las relaciones entre E; G y : Desarrollo B’ C’ ≈ 45° Analicemos el estado de corte puro: … se debe tener presente que un elemento (ABCD), que tenía la forma de un cuadrado de lados (a), se transformará por efecto de las tensiones tangenciales en la figura (AB’C’D)… g … supondremos que las tensión tangencial (t), sólo actúa en la cara superior (BC), por lo que el lado (AD) no se deforma… … y en el campo de las pequeñas deformaciones se verificará que: Esta equivalencia nos permitirá hallar las relaciones entre E; G y :

…por lo que se verifica que: Desarrollo a. B’ C’ ≈ 45° g Δd …y además: …y la deformación específica () de la diagonal (d) será: …y como: …por lo que se verifica que:

Desarrollo a. B’ C’ ≈ 45° g Δd …y como: …resulta: …e igualando (1) y (2) se tiene: …por lo tanto: …y de acuerdo a la Ley de Hooke, para el estado tensional del problema…

Bibliografía Estabilidad II - E. Fliess Introducción a la estática y resistencia de materiales - C. Raffo Mecánica de materiales - F. Beer y otros Resistencia de materiales - R. Abril / C. Benítez Resistencia de materiales - Luis Delgado Lallemad / José M. Quintana Santana Resistencia de materiales - V. Feodosiev Resistencia de materiales - A. Pytel / F. Singer Resistencia de materiales - S. Timoshenko

Muchas Gracias