M A T R I C E S MATRICES matrices
MATRIZ Es un arreglo rectangular de números. Los números del arreglo se denominan elementos de la matriz
El tamaño de una matriz se mide en término del número de renglones (líneas horizontales) y de columnas (líneas verticales) que contiene.
Una matriz cuadrada es simétrica si A = AT, (aij = aji para todos i, j) Sus elementos tienen simetría respecto de la diagonal principal.
Operaciones con matrices Definición (Suma de matrices): Sean A={aij} y B={bij} matrices de la misma dimensión mxn. La suma A+B es la matriz C={cij} de dimensión mxn, donde cij = aij + bij , esto es, la suma de las entradas correspondientes. Ejemplo: Definición (Producto de una matriz por un escalar): Sea A={aij} una matriz mxn y r un escalar. El producto rA del escalar r y la matriz A es la matriz B={bij} de la misma dimensión de A tal que bij = r aij
Multiplicación de matrices: Como ya se había visto en el capítulo anterior, un sistema de ecuaciones lineales, por ejemplo 2x1 - 3x2=7 3x1 - x2=2, tiene asociado una matriz A correspondiente a las incógnitas, y un vector b correspondiente a los términos independientes, es decir, Si ahora se escriben las incógnitas como un vector se puede denotar el sistema de ecuaciones lineales como Ax=b, es decir Esta última ecuación sugiere la noción de multiplicación de una matriz A por un vector columna x. Como noción preliminar, se introducirá el concepto de producto escalar o producto punto de dos vectores.
Definición (Multiplicación de matrices): Sean A={aik} una matriz de dimensión mxn y B={bkj} una matriz de dimensión nxs. El producto AB es la matriz C={cij} de dimensión mxs, donde la entrada cij de C es el producto punto de la i-ésima fila de A y la j-ésima columna de B. Nota: Obsérvese que el producto de dos matrices está definido solamente cuando el número de columnas de A es igual al número de filas de B. Ejemplo: (-3)(5) + (5)(0) + (8)(2) = 1 Posición c23 Columna 3 Fila 2
En general, el elemento cij está dado por Por ejemplo, si A3x4 , B4x7 , C7x3 , los productos AB3x7, BC4x3 y CA7x4 están definidos, mientras que no es posible multiplicar BA, AC y CB. Debe observarse que el producto de matrices en general no es conmutativa, esto es, aún cuando los productos AB y BA están definidos, no es necesariamente cierto que AB=BA, como muestra el siguiente ejemplo
Algunas veces es deseable calcular una fila o una columna particular del producto AB. El siguiente resultado permite obtenerlas: * La j-ésima columna del producto AB=A[j-ésima columna de la matriz B] * La i-ésima fila del producto AB=[i-ésima fila de la matriz A]B Ejemplos:
De este último ejemplo se puede concluir que la j-ésima columna del producto AB puede verse como una combinación de las columnas de la matriz A con los coeficientes de la j-ésima columna de la matriz B.