Unidad 1: Enlaces Tipos y Propiedades.

Slides:



Advertisements
Presentaciones similares
Longitud y energía de enlace
Advertisements

Enlace químico.
ENLACES REPRESENTACIONES DE FORMULAS LEWIS
UNIONES QUÍMICAS Fuerzas de interacción que mantienen unidos a los átomos, llevando a la formación de moléculas o compuestos.
Implicancias del enlace covalente
ESTRUCTURAS DE LEWIS (FORMULAS DE PUNTOS):
Enlace Químico.
Fuerzas Intermoleculares
“La sorprendente unión entre los átomos” Enlace Químico Profesoras: Katherine Espinoza Magdalena Loyola.
 Enlace Metálico: Este tipo de enlace se presenta en los metales, que forman agregados en los que no se encuentran átomos,sino iones ´positivos en posiciones.
QUÍMICA. QUÍMICA 5. ENLACE QUÍMICO. CINÉTICA QUÍMICA 5.1 Tipos de enlace; enlace iónico 5.2 Enlace covalente, fuerza y polaridad, regla del octeto, estructuras.
Energías de Interacción Tema 7 Química General e Inorgánica A Química General e Inorgánica I Química General.
INTERACCIONES INTRAMOLECULARES E INTERMOLECULARES.
El enlace químico Se describieron dos clases de enlaces químicos (fuerzas intramoleculares): el enlace iónico y el enlace covalente, ambos enlaces surgen.
EL ENLACE QUÍMICO TEMA 3 4º ESO
ENLACES INTERMOLECULARES
ENLACE QUÍMICO.
ENLACE QUÍMICO OBJETIVO: El objetivo fundamental del enlace es obtener una estabilidad de la materia. Los únicos elementos que son estables en la naturaleza.
FUERZAS QUÍMICAS INTRAMOLECULARES FUERZAS QUÍMICAS INTERMOLECULARES
FUERZAS INTERMOLECULARES LICDA. CORINA MARROQUIN
EL ENLACE QUÍMICO.
ESTRUCTURAS DE LEWIS Y FUERZAS INTERMOLECULARES
Tipos de enlaces.
EL ENLACE QUÍMICO.
Ana Elizabeth Chávez Hernández
UNIÓN DE ÁTOMOS Generalmente los átomos (y los iones) no se encuentran aislados sino que se unen unos a otros formando millones de sustancias puras distintas.
Enlace químico y fuerzas intermoleculares
ELECTRONEGATIVIDAD Es una medida de la capacidad de un átomo de atraer los electrones en un enlace químico.
SEMANA # 2 ENLACE QUIMICO
TEMA 13. EL ENLACE QUÍMICO.
Uniones intermoleculares para sólidos y líquidos
Química Orgánica D. Ph. Perla L. Ordóñez B.
ELECTRONEGATIVIDAD Es una medida de la tendencia de un átomo de atraer los electrones compartidos en un enlace químico. Es una medida de la capacidad.
Enlace químico y fuerzas intermoleculares
Enlace químico y fuerzas intermoleculares
Estructuras de Lewis para compuestos y Fuerzas Intermoleculares ( Fuerzas de atracción entre compuestos) SEMANA Licda. Isabel Fratti de.
SEMANA 3 ESTRUCTURAS DE LEWIS Y FUERZAS INTERMOLECULARES QUÍMICA 2016
ENLACE QUIMICO Semana No. 2 Capítulo 5 Licda. Bárbara Toledo
ENLACE QUÍMICO.
SEMANA 2 UNIONES Y ENLACES QUÍMICOS QUÍMICA 2017
BLOQUE V INTERPRETAS ENLACES QUIMICOS E INTERACCIONES INTERMOLECULARES
Enlace químico fqcolindres.blogspot.com 4º ESO.
SEMANA 2 ENLACE QUIMICO 2018 LICDA. CORINA MARROQUIN.
ENLACE QUÍMICO La tendencia normal de los átomos es unirse a otros para formar agrupaciones, a excepción de los gases nobles. Buscan una mayor estabilidad.
Colegio Ntra. Sra. del Buen Consejo (Agustinas)
Instructor: Rodrigo Caballero. PROPIEDADES DE LOS MATERIALES.
Enlace químico. Compuestos Es una sustancia pura que se descompone en elementos. La parte más pequeña de un compuesto es una molécula. La molécula es.
 FUERZAS INTRAMOLECULARES: Fuerzas que se dan en el interior de las moléculas: Enlace covalente. La fuerza de atracción electrostática, mantiene unido.
ESTRUCTURAS DE LEWIS (FORMULAS DE PUNTOS):
SEMANA # 2 ENLACE QUIMICO
ENLACE QUIMICO Semana No. 2 Capítulo 5 Licda. Bárbara Toledo
Estructuras de Lewis para compuestos y Fuerzas Intermoleculares ( Fuerzas de atracción entre compuestos) SEMANA Licda. Isabel Fratti de.
FUERZAS INTERMOLECULARES
Enlace Químico y FUERZAS INTERMOLECULARES
SEMANA 2 UNIONES Y ENLACES QUÍMICOS QUÍMICA 2017
ENLACE QUÍMICO La tendencia normal de los átomos es unirse a otros para formar agrupaciones, a excepción de los gases nobles. Buscan una mayor estabilidad.
Enlace.
Enlaces químicos I: conceptos básicos
Estructuras de Lewis, Geometría de la molécula y tipos de enlace
Área académica: prepa 2 Tema: Enlaces químicos Profesor: M. C
ENLACE COVALENTE Si dos átomos del mismo elemento se unen, ninguno de ellos tendrá mayor tendencia que el otro a quedarse con los electrones para adquirir.
UNIDAD 3 ENLACE qUÍMICO.
FUERZAS INTERMOLECULARES.
Uniones y ENLACE QUÍMICO
ENLACES QUÍMICOS. ¿QUÉ ES EL ENLACE QUÍMICO? Los enlaces químicos, son las fuerzas que mantienen unidos a los átomos. ¿POR QUÉ FORMAR ENLACES QUÍMICOS?
Escuela Sec. 72 “EMMA GODOY” RE 19EES01040I Zona Escolar 53 Pico de Orizaba 140 Col.Urdiales Monterrey,N.L. Enlaces químicos.
ESTRUCTURAS DE LEWIS Y FUERZAS INTERMOLECULARES
UNIONES QUÍMICAS 2010.
Enlace químico I: conceptos básicos
SEMANA UNIONES Y LICDA. CORINA MARROQUIN.
Transcripción de la presentación:

Unidad 1: Enlaces Tipos y Propiedades. Asignatura: Química Orgánica y Biológica Año: 2016 Carrera: Técnico Superior en Bromatología Bioquímica/Profesora en Cs. Qcas. y del Ambiente : Salerno, Hilda

Enlace iónico Un enlace iónico es la fuerza de atracción electrostática que mantiene unidos a los iones en un compuesto iónico. La gran variedad de compuestos iónicos están formados por un metal del grupo IA o IIA y un halógeno u oxigeno. Los metales alcalinos y alcalinotérreos (baja energía de ionización) son los elementos con más posibilidad de formar cationes y los halógenos y el oxigeno (electroafinidad alta), los más adecuados para formar aniones.

Enlace iónico Ejemplo: Mediante el empleo de símbolos de Lewis, represente la reacción entre un átomo de litio y un átomo de fluor para formar LiF Fórmula empírica: LiF

Enlace Covalente G. Lewis propuso que los enlaces químicos en las moléculas se forman cuando los átomos comparten pares de electrones externos. Un átomo puede adquirir la configuración electrónica de gas noble, compartiendo electrones con otros átomos. Lewis supuso que los electrones no compartidos también se aparean. Sugirió que los grupos de ocho electrones (octetos) en torno a los átomos tienen gran estabilidad. I. Langmuir sugirió el nombre de enlace covalente para un par compartido de electrones. El enlace químico que se forma compartiendo un par de electrones se llama enlace covalente.

Enlace Covalente Los símbolos de Lewis se combinan en estructuras de Lewis, o estructuras de puntos por electrones. Ejemplo: la molécula de H2 H─H El par de electrones compartidos proporciona a cada átomo de H dos electrones adquiriendo la configuración electrónica externa del gas noble helio.

Enlace Covalente En el enlace covalente cada electrón del par compartido es atraído por los núcleos de ambos átomos. Esta atracción mantiene unidos a los dos átomos en la molécula de H2 y es la responsable de la formación de enlaces covalentes en otras moléculas.

Enlace Covalente En átomos polielectrónicos, solo participan los electrones de valencia en la formación de enlaces covalentes. Los pares de electrones de valencia que no participan del enlace, o electrones no compartidos (o no enlazantes), se denominan pares libres o pares solitarios. Pares libres

Tipos de enlaces covalentes Enlace sencillo: dos átomos se unen por medio de un par de electrones. Enlaces múltiples: dos átomos comparten dos o más pares de electrones. Enlace covalente no polar: los electrones se comparten por igual entre dos átomos, por ejemplo: H2 y F2. Es el caso de dos átomos iguales enlazados. Enlace covalente polar: uno de los átomos (el más electronegativo) ejerce una atracción mayor sobre el par de electrones compartido que el otro. Enlace covalente dativo: ambos electrones compartidos provienen de uno solo de los átomos enlazados Las letras griegas  + y  - simbolizan las cargas negativas y positivas parciales creadas La molécula de cloruro de hidrógeno, es polar porque tiene un enlace covalente polar.

Tipos de compuestos covalentes a) Moleculares: existen como moléculas independientes, se presentan en estado gaseoso (ejemplo Cloro), líquido (ejemplo: bromo), o sólido (ejemplo yodo) b) Macromoleculares: son grandes agregados de átomos que se hallan unidos por enlaces covalentes (ejemplo: diamante, grafito, cuarzo), poseen elevado punto de fusión, son poco volátiles. Con excepción del grafito, no conducen la corriente eléctrica.

Polaridad de los enlaces y electronegatividad La electronegatividad es una propiedad que ayuda a distinguir el enlace covalente no polar del enlace covalente polar Si existe una gran diferencia de electronegatividad entre los átomos, tenderá a formar enlaces iónicos (NaCl, CaO) Si los átomos tienen electronegatividades similares tienden a formar entre ellos, enlaces covalentes polares porque el desplazamiento de la densidad electrónica es pequeño. Solo los átomos de un mismo elemento, con igual electronegatividad pueden unirse por medio de un enlace covalente puro.

Fuerzas intermoleculares Las moléculas se mantienen unidas entre si gracias a las fuerzas (atracciones) intermoleculares. A veces estas fuerzas se denominan fuerzas de Van der Waals (Johanes Van der Waals estudió este efecto en gases reales). Las fuerzas intermoleculares son mucho más débiles que los enlaces iónicos o covalentes. La intensidad de las atracciones intermoleculares disminuye al aumentar la distancia entre las moléculas, por lo que no son importantes en los gases pero cobran importancia en los líquidos y sólidos. Estudiaremos tres tipos principales de fuerzas intermoleculares: a) Fuerzas de London. b) Interacción dipolo- dipolo. c) Enlace de hidrogeno.

Fuerzas de London (fuerzas de dispersión de London) Las fuerzas de London son atracciones entre moléculas debidas a dipolos temporales causados por el movimiento de los electrones. Actúan entre cualquier tipo de moléculas, polares o apolares. En el caso de las moléculas no polares, es la única fuerza que actúa entre ellas. Cuando los electrones se mueven de un lado para otro, generan un momento dipolar instantáneo, pasajero. Los electrones pueden acumularse a un lado de una molécula, dejando el núcleo parcialmente al descubierto al otro lado. Un extremo de la molécula tendrá carga negativa parcial pasajera y el otro extremo carga positiva parcial también pasajera. Las cargas parciales instantáneas de las moléculas se atraen entre si y así pueden unirse unas con otras. La magnitud de la fuerza de London aumenta con el peso molecular. Esto explica porque el F2 y Cl2 son gases, el Br2 es liquido y el I2 un sólido a temperatura ambiente. Esta interacción es efectiva entre moléculas muy cercanas.

Fuerzas de London (fuerzas de dispersión de London)

Interacción dipolo- dipolo Es la que se da entre moléculas neutras polares. Las moléculas polares poseen cargas parciales permanentes, además de las cargas parciales instantáneas motivadas por las fluctuaciones de sus nubes electrónicas. Las cargas parciales de una molécula polar pueden interaccionar con las cargas parciales de una molécula vecina y originar una interacción dipolo-dipolo. Esta interacción existe además e independientemente de las fuerzas de London. La magnitud de estas interacciones depende, de las magnitudes de los dipolos que interaccionan y de la forma de la molécula. Las moléculas polares forman líquidos y sólidos en parte como resultado de las interacciones dipolo-dipolo, o sea, la atracción entre las cargas parciales de sus moléculas.

Atracciones dipolo-dipolo (líneas punteadas) entre moléculas de BrCl.

Enlace de hidrogeno El enlace de hidrogeno es un tipo especial de atracción intermolecular que existe entre el átomo de hidrogeno de un enlace polar (por ejemplo: H-F; H-O ó H-N) y un par de electrones no compartido en un ión o átomo electronegativo cercano (generalmente un átomo de fluor, oxigeno, nitrógeno de otra molécula). Esta fuerza intermolecular es la que da al H2O sus propiedades características. Su punto de ebullición es mucho más alto que el esperado de acuerdo a su peso molecular, tiene punto de fusión, calor especifico y calor de vaporización altos. Estas propiedades indican que las fuerzas entre las moléculas de agua son anormalmente intensas. En el NH3, y el HF ocurre lo mismo.

Ejemplos: F  H----- F  H----- F  H----- F  H Enlace de hidrogeno Un enlace de hidrogeno se representa con puntos (-------) para diferenciarlo de un verdadero enlace covalente que se representa mediante una línea continua (  ). - +  - + - + - + Ejemplos: F  H----- F  H----- F  H----- F  H

Resonancia La mayor parte de las sustancias pueden representarse sin dificultad por las estructuras de enlace línea de Kekule. En el ion acetato necesitamos mostrar un doble enlace para un oxigeno y un enlace sencillo para el otro, ¿ Cual oxigeno es cual?

Resonancia Ninguna de las dos estructuras para el acetato es correcta por si misma. La verdadera estructura es intermedia entre las dos. Se llaman FORMAS RESONANTES a las dos estructuras individuales de enlace línea para el acetato y su relación especial de resonancia se indica con la flecha de doble cabeza entre ellas. Las única diferencia entre las formas de resonancia es la posición de los electrones π y los electrones de valencia sin enlazar. El acetato es un Hibrido de resonancia

Reglas para la forma de resonancia

Resonancia

Resonancia

Resonancia

Resonancia

Resonancia

Bibliografía McMurry, Jhon: Química Orgánica. 8va Edición. Año: 2012 Morrison, R. Y Boyd, R.N. 1990. Química Orgánica, Addison Wesley Iberoamericana, Madrid. Atkins, P. y Jones, L. “Química. Moléculas. Materia. Cambio”. Ediciones Omega S.A. Barcelona. España. 1998 Atkins, P. y Jones, L. “Principios de Química”.Los Caminos del Descubrimiento. Editorial Médica Panamericana. Buenos Aires. 2006 Brown, T., LeMay, H., Bursten, B. “Química la Ciencia Central”. Prentice Hall Hispanoamericana S.A. México. 1998. Chang, R. “Química”. McGraw-Hill Interamericana de México, S.A. de C. V.México. 1999 Whitten, K., Davis, R., Peck, M. Química General. McGraw- Hill/Interamericana de España S.A.U. 1998.