Tema.10. Conceptos básicos de muestreo y probabilidad aplicados a modelos en Psicología. Principales conceptos. Teoremas básicos. Variables aleatorias.

Slides:



Advertisements
Presentaciones similares
Tema 7: Probabilidad 1. Introducción. 2. Variables aleatorias.
Advertisements

Tema. 2. Conceptos básicos. Medida en Psicología
Estadística I. Finanzas Y Contabilidad
AZAR Y PROBABILIDAD..
Bioestadística,2006.
DEFINICIONES       Experiencia Aleatoria: es aquella cuyo resultado depende del azar: ( lanzto de un dado, una moneda, extraer una bola, una carta, etc.)
DEFINICIONES       Experiencia Aleatoria: es aquella cuyo resultado depende del azar: ( lanzto de un dado, una moneda, extraer una bola, una carta, etc.)
1.Introducción a la Estadística 2.Descripción de los conjuntos de datos 3.Uso de la Estadística para sintetizar conjuntos de datos 4.Probabilidad 5.Variables.
AZAR Y PROBABILIDAD.
PROBABILIDAD.
Variables Aleatorias Distribuciones
Matemáticas, juego,...fortuna: Este año me toca la lotería
Unidad II: Teoría de Conjuntos.
Conocimiento de la escala de probabilidad
Introducción a la probabilidad
ANTECEDENTES DE ESTADÍSTICA PARA LA INVESTIGACIÓN: 3
FACULTAD DE INGENIERÍA
2. INTRODUCCION A LA TEORIA DE LA PROBABILIDAD
Se lanza tres monedas sobre una mesa.
4. 0 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD 4
SUCESOS Y SUS PROBABILIDADES
4. Variable aleatoria discreta
EXPERIMENTO, ESPACIO MUESTRAL Y EVENTOS
Índice Estadística Aplicada Unidad II: Probabilidades
Distribuciones de Probabilidad
Contenido General - Evaluación
PROBABILIDAD Y ESTADISTICA
CÁLCULO DE PROBABILIDADES
AZAR Y PROBABILIDAD..
Probabilidad. Variables aleatorias.
Bioinformática: Fundamentos y aplicaciones de actualidad Curso de verano 2005 Revisión de algunos modelos probabilísticos de evolución genética (Procesos.
TEMA 5 PROBABILIDAD.
Probabilidad 1. Espacio muestral 2. Sucesos. Tipos de sucesos
Conceptos Básicos de Probabilidad
Tema 6: Modelos probabilísticos
2. Probabilidad Dominar la fortuna
PROBABILIDADES Yolanda y Alberto están jugando con un dado cuyas caras están numeradas del 1 al 6. Pero Alberto es muy tramposo y ha cambiado el dado por.
TEMA 4.1. INTRODUCCION A LA PROBABILIDAD (cont.)
Probabilidad
Estadística - Probabilidad
1.Introducción a la Estadística 2.Descripción de los conjuntos de datos 3.Uso de la Estadística para sintetizar conjuntos de datos 4.Probabilidad 5.Variables.
Unidad II: Variables Aleatorias Concepto Discreta y Continua Fun. de densidad Fun. de probabilidad F. de distribución Esperanza y Varianza Propiedades.
ESTADISTICA II PARTE PRIMERA: PROBABILIDAD Y VARIABLES ALEATORIAS
María Macías Ramírez y David Marín Pérez
Sesión 10: Variable Aleatoria
Sesión 09: Teoría de las Probabilidades
CÁLCULO DE PROBABILIDADES
Tema 6: Distribuciones estadísticas
VARIABLES ALEATORIAS Depto. Matemáticas – IES Elaios
La Distribución Binomial
Lic. Sandra Milena Pachón peralta Universidad Pedagógica Nacional
1.Introducción a la Estadística 2.Descripción de los conjuntos de datos 3.Uso de la Estadística para sintetizar conjuntos de datos 4.Probabilidad 5.Variables.
Objetivo del Cálculo de Probabilidades: Cálculo de Probabilidades
Tema 5 : PROBABILIDAD.
Distribuciones de Probabilidad
Tema 5 PROBABILIDAD.
TEMA 5 PROBABILIDAD.
Inferencia Estadística Conceptos Previos. Conceptos Previos Población: Es la colección de toda la posible información que caracteriza a un fenómeno aleatorio.
Concepto de Probabilidad
Tema : Probabilidad.
Jugadores de cartas. Caravaggio.
Villamizar Luis Miguel. Variables aleatorias Se denomina variable aleatoria al conjunto imagen de esta correspondencia, es decir, al conjunto de los números.
D ISTRIBUCIÓN DE PROBABILIDAD Alumno: Rafael Rosete Cabrera Centro de Estudios del Atlántico Catedrático: Cesar Pérez Pérez.
Rodrigo Ferrer Urbina Universidad de Tarapacá, Arica Doctor en Psicología (UAM-España) Máster en Metodología de las Ciencias del Comportamiento y de la.
II. INTRODUCCION A LA TEORIA DE LA PROBABILIDAD FENÓMENO O EXPERIMENTO ALEATORIO Es un proceso de medición u observación cualquiera, en la cual los resultados.
TEMA : DISTRIBUCIONES DE PROBABILIDADES
1.- Fenómeno aleatorio y determinista. a) Un fenómeno es aleatorio si no se conocen los resultados posibles b) Si un fenómeno es aleatorio entonces no.
Estadística y probabilidad
CLASE 2 Definiciones de probabilidad.
Tema 7: Uso de la probabilidad en la investigación psicológica
Transcripción de la presentación:

Tema.10. Conceptos básicos de muestreo y probabilidad aplicados a modelos en Psicología. Principales conceptos. Teoremas básicos. Variables aleatorias discretas y continuas. Principales funciones definidas sobre las variables aleatorias: función de probabilidad, densidad de probabilidad y distribución.

Principales conceptos preliminares Experimento aleatorio: Es cualquier operación cuyo resultado no puede ser predicho con certeza Por ejemplo, tirar un dado, efectuar una tarea de TR, o un test de rendimiento, el número de accidentes un fin de semana. Espacio muestral (E): Es el conjunto de todos los posibles resultados de un experimento aleatorio. Por ejemplo, si lanzamos un dado tenemos 6 posibles resultados.

Dependiendo del número de elementos del espacio muestral distinguiremos 3 tipos de espacios muestrales: Espacio muestral discreto finito. Consta de un número finito de elementos. (v.g., el ejemplo del dado). Espacio muestral discreto infinito. Consta de un número infinito numerable de elementos. (v.g., lanzar un dado hasta que salga un “6”) Espacio muestral continuo. Consta de un número infinito no numerable de elementos. (v.g., número posible de puntos alcanzables en un experimento de “lanzar flecha a diana”)

Suceso. Es cualquier subconjunto de un espacio muestral Tipos de sucesos (de acuerdo con el número de elementos del espacio muestral): Suceso simple (o elemental), que es el que consta de un único elemento Suceso compuesto, que consta de dos o más elementos Suceso seguro (o cierto), que consta de todos los elementos del espacio muestral Suceso imposible, que es el que no consta de ningún elemento del espacio muestral Representación de los sucesos---Diagramas de Venn son útiles

Probabilidad: veremos dos enfoques, el interpretativo y el formal ENFOQUE FORMAL Axioma 1. La probabilidad del suceso seguro es 1 Axioma 2. La probabilidad de cualquier suceso S es no negativa Axioma 3. La probabilidad de la unión de dos sucesos (S1 y S2), mutuamente excluyentes, es la suma de sus probabilidades

Teorema. La probabilidad de la unión de un conjunto infinito numerable de sucesos mutuamente excluyentes es igual a la suma de sus probabilidades Probabilidad condicional Llamamos probabilidad condicional de A dado/supuesto B a la expresión Teorema del producto

Sucesos independientes Sucesos independientes. Dos sucesos A y B son estadísticamente independientes si y sólo si se verifica

Variable aleatoria Es toda función que atribuye un número real, y solo uno, a cada suceso elemental de E; es decir, toda función real definida sobre E. Notación: las vv.aa. se designan con letras mayúsculas latinas, mientras que los valores atribuidos a los sucesos estarán con letras minúsculas latinas. Variable aleatoria discreta Aquella que sólo puede tomar un número finito o infinito numerable de valores Variable aleatoria continua Aquella que puede tomar un número infinito no numerable de valores

Función de probabilidad de X (v.a. discreta) Es aquella función que asigna a todo número real, xi, la probabilidad de que la variable aleatoria X asuma ese valor, salga xi Propiedades son los valores asumibles por la v.a. X 1. 2. 3. Siendo a<b<c, el suceso A={a≤X≤b} y el suceso B={b<X≤c} son mutuamente excluyentes. Se cumple

Función de distribución de X (v.a. discreta) Es aquella función que asigna a todo número real, xi, la probabilidad de que la v.a. X sea igual o menor que xi Propiedades 1. 4. 2. 5. 3. es una función no decreciente

Función de densidad de probabilidad (v.a. Continua) Es aquella función, f(x), que verifica las siguientes dos condiciones La curva, que es la representación de f(x), no tiene puntos por debajo del eje de abscisas 1. 2. El área TOTAL bajo la curva vale 1 Observad que con vv.aa. continuas f(x) no es una probabilidad, es una DENSIDAD de probabilidad.

Función de densidad de probabilidad (v.a. Continua). Ejemplo Examinar si f(x) es una verdadera función de densidad de probabilidad 0 en otro caso Es claro que f(x) será siempre mayor o igual que 0 Observad que f(x) puede ser mayor que 1: f(1)=3’25 Luego sí lo es.

Función de distribución de X (v.a. Continua) Es aquella función que asigna a todo número real, x, la probabilidad de que la v.a. X sea igual o menor que x Propiedades 1. 4. 2. 5. 3. es una función no decreciente

VV.AA. discretas vs. VV.AA. continuas. COMPARACIÓN 1. En una v.a. discreta, P(X=x)≥0 para todo x. En una v.a. continua, P(X=x)=0 para todo x. 2. En una v.a. discreta, f(x) representa una probabilidad, en concreto, P(X=x) y, nunca puede valer más de 1. En una v.a. continua, f(x) no representa la probabilidad, sino la densidad de probabilidad (esto es, puede valor más que 1). 3. En una v.a. discreta, empleamos puntos para introducir la probabilidad. En una v.a. continua empleamos intervalos (recordad que la probabilidad de cada punto es 0). 4. En una v.a. discreta, cualquier probabilidad es la suma de probabilidades asociadas a puntos. En una v.a. continua, cualquier probabilidad es una integral definida, asociada a un intervalo.

Valor esperado (esperanza) en vv.aa. discretas Supongamos que X sea una v.a. discreta y cuya función de probabilidad sea f(x). Se llama valor esperado, E(X) a la siguiente expresión Valor esperado (esperanza) en vv.aa. continuas Supongamos que X sea una v.a. continua y cuya función de densidad de probabilidad sea f(x). Se llama valor esperado, E(X) a la siguiente expresión