Valoración de Opciones

Slides:



Advertisements
Presentaciones similares
Clara Cardone-Riportella
Advertisements

Profesor: Miguel Angel Martín Mato
Gestió del risc i alternatives dinversió Terrassa, 25 dabril de 2007.
Rendimiento - Riesgo Dr. Marcelo A. Delfino.
INTRODUCCIÓN A LOS MERCADOS DE FUTUROS
INTRODUCCIÓN A LOS DERIVADOS
Profesor : Rodrigo Sanchez H.
ANÁLISIS FUNDAMENTAL DE ACCIONES
UD. 12 GESTIÓN FISCAL 1. EL SISTEMA TRIBUTARIO ESPAÑOL
INSTRUMENTOS FINANCIEROS DERIVADOS
Componentes de la Tasa de Interés
Toma de decisiones bajo condiciones de riesgo
EVALUACION DE PROYECTOS
Gestión Económica y Financiera
SIMULACION DE FUTUROS Y OPCIONES DE DOLAR
Al crecimiento de la empresa
Los puntos de vista expresados en esta presentación son exclusivamente del ponente y no representan necesariamente la posición del Banco de España. La.
Cetes es de: 28 días a 18% 90 días a 19% 180 días a 20% 270 días a 21% A q tasa usted estará dispuesto a negociar un futuro sobre cetes a 90 días con.
Forwards :: Forwards de Tipo de Cambio :: Formulación
Contratos de Opciones Lic. Gabriel de la Fuente.
Opciones y derivadas Una opción financiera es un instrumento financiero derivado que se establece en un contrato que da a su comprador el derecho, pero.
Análisis de Riesgo y Rendimiento
10/10/02 Miguel Angel Maliandi
ESTRATEGIAS CON OPCIONES
FINANCIAMIENTO A LARGO PLAZO
¿CÓMO DETERMINAR LA VOLATILIDAD?
Sesión 4 VALORES NEGOCIABLES
Introducción al concepto de Opción Financiera
DECISIONES FINANCIERAS ESTRATEGICAS
Administración Financiera
Curso Trader de Opciones Financieras +Estrategias con Opciones +Analisis Fundamental Aquí te mostramos un 5% del curso!
RIESGOS FINANCIEROS FACULTAD DE CIENCIAS CARRERA: ING. EN CIENCIAS ECONÓMICAS Y FINANCIERAS PERIODO: Ing. Marcela Guachamín.
A PLAZO FUTUROS Y FORWARDS. INTRODUCCIÓN GENERAL AL NIVEL DE PRECIOS Y EL TIPO DE CAMBIO A LARGO PLAZO.
Opciones Como funciona Precio Ejemplos. ¿Por qué opciones? Debilidad de los futuros: Hemos visto que los futuros pueden reducir el riesgo de la pérdida.
UNIVERSIDAD TECNOLÓGICA ECOTEC. ISO 9001:2008 FUTUROS Y SWAP DEFINICIONES OBJETIVOS EJERCICIOS ALUMNA: LOURDES JACQUELINE GARCIA LEON.
Tema 8. Funcionamiento de los mercados de opciones
Ventajas y desventajas de las coberturas con opciones
Finanzas Internacionales1 Teorías sobre la determinación de los tipos de cambio.
INTRODUCCION A OPCIONES Especificaciones de un Contrato de Opciones
Aprendizajes Esperados
COBERTURA CON OPCIONES
1 DERIVADOS 2 Un derivado, como su nombre lo indica es un producto basado en otro. El activo del cual se deriva se conoce como activo o bien subyacente.
OPCIONES FINANCIERAS La opción es un instrumento financiero derivado, establecido mediante un contrato de opción, que establece: Al comprador el derecho.
C.P. José Asunción Neira Flórez
Unidad 4 ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES (ETTI)
INSTRUMENTOS Y OPERACIONES FINANCIERAS UNIVERSIDAD AUTÓNOMA SAN FRANCISCO INGENIERIA COMERCIAL Y FINANCIERA C.P.C.C. JUAN BACILIO MAMANI BARREDA
Generalidades del sistema financiero Generalidades de los valores
Swap de Divisas.
1 Aprender a Invertir en Bolsa +Analisis Fundamental +Opciones Financieras +Estrategias con Opciones Aquí te mostramos un 5% del curso!
Instrumentos sintéticos
INTRODUCCION A OPCIONES
EL MODELO DE BLACK-SCHOLES
INTRODUCCIÓN.
La lógica económica de las primas de las calls y puts.
1 CAPÍTULO ONCE Valoración de opciones Todas las condiciones en las siguientes páginas son basadas en el supuesto que los mercados de opciones son eficientes.
Incertidumbre en los mercados financieros
INSTRUMENTOS Y OPERACIONES FINANCIERAS
DERIVADOS.
Valuación básica de los activos financieros bonos capital contable
MÁSTER OFICIAL EN MERCADOS FINANCIEROS, BANCA Y FINANZAS GLOBALES
Futuros de divisas y mercados de opciones
MODULO FINANZAS CORPORATIVAS JUNIO PLANIFICACION DE EVALUACIONES Primera Prueba: ELA Sábado 20 de Junio del 2015 Segunda Prueba:Jueves 02 de julio.
Introducción a los Forward y Futuros
Derivados Financieros relacionados con Activos de Reserva Febrero, 2015 División Económica Departamento de Estadística Macroeconómica Área de Estadísticas.
1 DEFINICION Instrumento financiero cuyo valor depende de otro denominado subyacente, que puede ser: una acción de una empresa, un índice bursátil, divisas.
El mercado de activos, el dinero y los precios
Derivados financieros: definición y medición FMI - CAPTAC-DR Taller sobre Avances del Proyecto Regional de Armonización de las Estadísticas del Sector.
Información elaborada por el profesor Francisco Javier Alonso Rodríguez a partir de la información suministrada por la Comisión Nacional del Mercado de.
Mayo de Se dice que una empresa es rentable cuando genera suficiente utilidad o beneficio, es decir, cuando sus ingresos son mayores que sus gastos,
COBERTURA CAMBIARIA. 1.Escenario económico global 2.Escenario económico local 3.Identificación y clasificación de riesgos cambiarios 4.Instrumentos y.
Transcripción de la presentación:

Valoración de Opciones Gestión Económica y Financiera Valoración de Opciones Ing. Wilbert Zevallos Gonzales

Contenido 1 Teoría de valoración de opciones 2 Factores que determinan el valor de una opción Estrategias con opciones 3 Modelos de valoración de opciones 4 Ejercicios 5

Teoría de Valoración de Opciones Concepto de Opción Una opción es un contrato entre dos partes en el que el comprador adquiere el derecho, pero no la obligación, de comprar o vender un determinado activo subyacente a un precio específico, en o durante un periodo de tiempo también determinado, a cambio de una prima o premio. Paralelamente, el vendedor o emisor se obliga a vender o comprar dicho activo en las condiciones pactadas.

Teoría de Valoración de Opciones Opciones de compra (Call) Da el derecho al comprador del contrato de adquirir el activo subyacente. Es decir a tomar una posición larga o compradora, si la opción se ejerce. Opciones de venta (Put) Da el derecho al comprador a vender un activo subyacente. Es decir, a adoptar una posición corta o vendedora si decide ejercer la opción. Cuando el comprador puede ejercer su derecho en cualquier día en que la opción sea negociada, la opción se dice que es de estilo americano, y cuando solo puede ser ejercida en su fecha concreta de vencimiento, se dice que es de estilo europeo.

Teoría de Valoración de Opciones Elementos de los contratos de opciones Comprador (Buyer) Vendedor (Seller) Prima o Premio (Premium) Activo subyacente (Underlying) Precio de ejercicio de la opción (Strike price) Fecha de expiración (Expiration date)

Teoría de Valoración de Opciones El tenedor de una opción puede realizar tres acciones diferentes: No hacer nada: la opción expira en una fecha determinada. Ejercer la opción: lo que se traducirá en comprar o vender el activo subyacente al precio del ejercicio de la opción. Vender o compensar la opción: lo que supondrá el tener que vender una opción idéntica a la que hubo comprado previamente

Factores que determinan el valor de una opción El comprador de una opción paga una prima al vendedor por el derecho que adquiere. La prima es siempre un costo efectivo para el comprador ya que sólo debe realizar una inversión inicial y no incurre en ninguna otra obligación. En cambio, para un vendedor, la prima representa la cantidad máxima que puede ganar, ya que se enfrenta a la posibilidad de que la opción se ejerza. Al ejercerse ésta, el vendedor tendrá una posición de perdida, ya que el comprador sólo ejercerá una opción cuando ésta tenga lo que se denomina “valor intrínseco”

Factores que determinan el valor de una opción Los tres elementos esenciales de la prima de una opción son: el precio del subyacente, el tiempo que falta hasta el vencimiento y la volatilidad del precio del activo subyacente. Por lo tanto los componentes de una prima son: Prima = Valor intrínseco + Valor en el tiempo Valor intrínseco es la diferencia entre el precio de mercado del activo subyacente y el precio de ejercicio de la opción.

Factores que determinan el valor de una opción Las opciones se pueden clasificar de acuerdo a si el precio del activo subyacente es mayor o menor que su precio de ejercicio en: Opciones dentro de dinero (in the money, o ITM): Son aquellas que si se ejerciesen ahora mismo proporcionarían una ganancia. Opciones fuera de dinero (out of the money, o OTM): Son aquellas que si se ejerciesen ahora mismo proporcionarían una perdida. Opciones en el dinero (at the money, o ATM): Son aquellas cuyo precio de ejercicio es igual, o muy parecido, al precio del activo subyacente.

Factores que determinan el valor de una opción En cuanto al valor tiempo, es el montante monetario que el comprador de una opción ha de pagar por la posibilidad, en el tiempo, de un cambio en el precio del subyacente que, a su vez, pueda originar un aumento en el valor de la opción. Valor en el tiempo= Prima - Valor intrínseco Los componentes del valor tiempo son: El tiempo que queda hasta el vencimiento La volatilidad del precio del activo subyacente Los tipos de interés sin riesgo a corto plazo La oferta y la demanda de la opción.

Estrategias con opciones Comprar una opción de compra (buy a call) Vender una opción de compra (write a call) Comprar una opción de venta (buy a put) Vender una opción de venta (write a put)

Estrategias con opciones “Compra de una call” Ejemplo: Analice la siguiente opción Call sobre libras esterlinas. La opción le da el derecho a comprar 25.000 £ en un plazo de dos meses y a un precio de ejercicio (strike-price) de 1.8U$/£. El costo de la opción (prima) será de 0.04 US$/£. BENEFICIOS: ilimitados Situación Comprador Ganancias 1.8 1.84 Pérdidas ($1.000) PERDIDAS: Limitadas

Estrategias con opciones “Compra de una call”

Estrategias con opciones “Compra de una call”

Estrategias con opciones “Venta de una call” $1.000 Ganancia 1.80 1.84 Situación vendedor BENEFICIOS: limitados Perdidas PERDIDAS: ilimitadas

Estrategias con opciones “Venta de una call”

Estrategias con opciones “Compra de una put” PRECIO DE EJERCICIO: 3000 PRIMA: 75 BENEFICIOS: ilimitados Ganancias 3,000 2,925 Pérdida limitada -75 PERDIDAS: limitadas

Estrategias con opciones “Venta de una put” PRECIO DE EJERCICIO: 3000 PRIMA: 75 BENEFICIOS: limitados + 75 Ganancias 2,925 3,000 Perdidas PERDIDAS: ilimitadas

Modelos de Valoración de Opciones Los modelos de valoración de opciones pretenden, mediante estructuras analíticas, dar a conocer el valor teórico de una opción en función de una serie de variables. Dado que la reproducción de la realidad es imposible, los modelos teóricos parten de supuestos basados en el ideal de mercado perfecto. Los modelos de valoración de opciones se basan en la consideración de las siguientes variables: precio del activo subyacente, precio de ejercicio, tiempo hasta la expiración, tipo de interés y volatilidad del mercado. Los modelos mas utilizados son: El modelo Binomial El modelo Black - Scholes

El modelo Binomial Es un modelo discreto que considera que la evolución del precio del activo subyacente varia según un proceso binomial multiplicativo. Es decir, solo puede tomar dos valores posibles, uno al alza y el otro a la baja, con probabilidades asociadas “p” y “(1-p)” Su Con probabilidad de p S Sd Con probabilidad de 1- p S = Precio del activo subyacente en el momento presente u = Movimiento multiplicativo al alza del precio d = Movimiento multiplicativo a la baja del precio

Modelo Binomial para un solo periodo Supongamos que el valor de una acción ordinaria es de $100 y que dentro de un periodo dicho titulo puede tomar un valor de $120, o bien, haber descendido hasta los $90. Si adquirimos por C dólares una opción de compra europea sobre dicha acción con vencimiento dentro de un periodo, entonces: Movimientos del precio de la acción Valor de la opción de compra 120 20 100 C 90

Modelo Binomial para un solo periodo Si H es el numero de acciones ordinarias que compramos por cada opción de compra emitida tenemos que si: El valor de la acción ordinaria dentro de un periodo es de $120, y el de la opción de compra es $20, por lo tanto el flujo de caja será: H x 120 – 20 El valor de la acción ordinaria dentro de un periodo es de $90, y el de la opción de compra es $0, por lo tanto el flujo de caja será: H x 90 – 0 Igualando ambos flujos de caja y despejando H obtendremos : 120 H – 20 = 90 H – 0 H = 2/3

Modelo Binomial para un solo periodo Esto es, la cartera formada por 2/3 de una acción ordinaria y la venta de una opción de compra sobre ella no tiene ningún riesgo, por lo tanto, el rendimiento que se obtendrá con ella, será un rendimiento sin riesgo (Rf) Si el precio de la acción fuese de $120 y el tipo libre de riesgo durante ese periodo fuese del 6%, tendríamos que el valor del flujo de caja seria: 2/3 x 120 – 20 = $60, y el de la inversión: 2/3 x 100 – C, despejamos C

Modelo Binomial para un solo periodo Si la opción de compra valiese en el mercado $11, entonces el rendimiento seria: Una vez visto como se calcula el ratio de cobertura a través de un ejemplo numero, ahora vamos a obtenerlo de una formula. S = Precio de la acción subyacente en la actualidad Su = Precio de la acción dentro de un periodo si es alcista Sd = Precio de la acción dentro de un periodo si es bajista

Modelo Binomial para un solo periodo Su Sd C Cu Cd Movimientos del precio de la acción Valor de la opción de compra El flujo de caja esperado al final del periodo será: Si los precios suben: H x Su – Cu Si los precios bajan: H x Sd - Cd

Modelo Binomial para un solo periodo Las probabilidades implícitas a cada evento son: p = (1 + 0,06-0.9) / (1,2 – 0,9) = 53,33 % de que ascienda 1 – p =46,66 % de que descienda

Modelo Binomial para un solo periodo Entonces, para calcular el valor de la opción: C = (20 x 0,5333 + 0 x 0,4666) / (1,06) = $10,0629

Modelo Binomial para dos periodos Suponiendo que el coeficiente de crecimiento del precio de la accion es U=1,2 y que el de decrecimiento es D=0,9, podemos ver como, transcurridos un par de periodos, la cotización ordinaria ha podido ascender hasta un máximo de $144, o bien hasta un mínimo de $81, o tomar un valor intermedio de $108. Movimientos del precio de la acción Valor de la opción de compra Su2 144 Cuu 44 Su 120 Cu S 100 Sud 108 Cud 8 C Sd 90 Cd Sd2 81 Cdd

Modelo Binomial para dos periodos El proceso comenzara de derecha hacia la izquierda, periodo a periodo. Primeramente deberemos calcular el valor de la opción al final del primer periodo, tanto en el caso de ascenso como de descenso Una vez que tenemos dos valores podemos calcular el precio teórico de la opción de compra europea a través de la misma expresión matemática:

El Modelo Black - Scholes Las hipótesis básicas del modelo B-S, que son similares a las del modelo binomial, son las siguientes: Mercado financiero perfecto y profundo No existen comisiones no costos de transacción ni de información Ausencia de impuestos y, si existen, gravarían por igual a todos los inversores La acción o activo subyacente no paga dividendos El precio del activo subyacente “S” realiza un recorrido aleatorio con varianza δ2 La distribución de probabilidad de los precios del subyacente es lognormal y la varianza de la rentabilidad es constante por unidad de tiempo del periodo.

El Modelo Black - Scholes Según B-S, el valor teórico de una opción de compra se determina por la siguiente formula: C = Precio de la opción call S = Precio del activo subyacente E = Precio del ejercicio r = Tasa de interés continua en el tiempo: r = ln(1+rf) t = Tiempo de expiración de la opción δ = Volatilidad del precio del subyacente (medido por la desviación estándar anualizada) N(i) = Valores de la función de distribución normal estandarizada para “i” e = Base de los logaritmos neperianos: 2,7183

El Modelo Black - Scholes El valor teórico de una opción de venta “P”: También puede obtenerse a partir de la paridad put call que, en este caso, seria:

El Modelo Black - Scholes Ejercicio: Calcular el valor de una opción CALL y una opción PUT, con los siguientes datos: S=90 um E=85 um t = 3 meses i = 12% anual δ = 30%

El Modelo Black - Scholes