La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Apuntes 2º Bachillerato C.T.

Presentaciones similares


Presentación del tema: "Apuntes 2º Bachillerato C.T."— Transcripción de la presentación:

1 Apuntes 2º Bachillerato C.T.
SEGUNDA DERIVADA TEMA * 2º BCT @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

2 CONCAVIDAD Y CONVEXIDAD
Sea la curva y = f (x). Sea xo un punto cualquiera de la curva. Sea y = t(x) la ecuación de la recta tangente a la curva por dicho punto. DEFINICIONES Si en las cercanías de xo tenemos f(x) > t(x) la curva es CONVEXA en xo. Si en las cercanías de xo tenemos f(x) < t(x) la curva es CÓNCAVA en xo. Si a la izquierda de xo tenemos f(x) < t(x) y a la derecha de xo tenemos f(x) > t(x) o viceversa, entonces x=xo es un PUNTO DE INFLEXIÓN. @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

3 CONCAVIDAD Y CONVEXIDAD
y = f (x) y = t (x) f (x) > t (x)  CÓNCAVA x=xo y = t (x) x=xo f (x) < t (x)  CONVEXA y = f (x) @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

4 Apuntes 2º Bachillerato C.T.
Puntos de INFLEXIÓN y = f (x) y = t (x) Cóncava Cóncava x=xo Convexa Convexa PUNTO DE INFLEXIÓN @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

5 Apuntes 2º Bachillerato C.T.
SEGUNDA DERIVADA Si f(x) tiene segunda derivada en xo, se cumple que: Si f(x) es cóncava en xo  f ‘ (x) es creciente en xo  f ’’ (xo) ≥ 0 Si f(x) es convexa en xo  f ‘ (x) es decreciente en xo  f ’’ (xo) ≤ 0 Si f(x) tiene un punto de inflexión en xo  f ’’ (xo) = 0 Conclusiones Si f ‘’(xo) > 0  f (x) es cóncava en xo. Si f ‘’(xo) < 0  f (x) es convexa en xo. Si f ‘’(xo) = 0 y f ‘’’ (xo) <>0  f (x) tiene un P.I. en xo. @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

6 IDENTIFICACIÓN DE MÁXIMOS Y MÍNIMOS
Si f ‘ (x) = 0 y existe segunda derivada en xo, entonces: Si f ‘’(xo) > 0  f (x) tiene un MÍNIMO RELATIVO en xo. Si f ‘’(xo) < 0  f (x) tiene un MÁXIMO RELATIVO en xo. EJEMPLO_1 Sea y = (1 / 3) x3 – (3 / 2) x2 + 2 x – 5 Hallar máximos, mínimos y puntos de inflexión. Sea y ’ = x2 – 3x + 2  y ‘ = 0  (x – 1).(x – 2) = 0 Hallamos la segunda derivada: y ‘’ = 2.x – 3 En x=1  y ‘’ (1) = 2 – 3 = - 1 < 0  Máximo relativo en x=1 En x=2  y ‘’ (2) = 4 – 3 = 1 > 0  Mínimo relativo en x=1 y ‘’ =0  2.x – 3 = 0  x = 1,5  y ‘’’ = 2 <>0  P. Inflexión. @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

7 Apuntes 2º Bachillerato C.T.
EJEMPLO_2 Sea y = (1 / 3) x3 + x2 – 5 Hallar máximos, mínimos y puntos de inflexión. Sea y ’ = x2 + 2x  y ‘ = 0  x .(x + 2) = 0 x=0 y x= - 2 son los posibles máximos y mínimos relativos. Hallamos la segunda derivada: y ‘’ = 2.x + 2 En x = 0  y ‘’ (0) = = 2 > 0  Mínimo relativo en x=0 En x = – 2  y ‘’ (– 2 ) = – = – 2 < 0  Máximo relativo en x= – 2 y ‘’ = 0  2.x + 2 = 0  x = – 1 es el posible P. de Inflexión.  y ‘’’ = 2 <>0  P. Inflexión. @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.


Descargar ppt "Apuntes 2º Bachillerato C.T."

Presentaciones similares


Anuncios Google