La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

TEMA 3: Modelos de Oligopolio. Modelos de empresa dominante y de competencia monopolística Modelo de empresa Dominante: Hipótesis: Las empresas de la.

Presentaciones similares


Presentación del tema: "TEMA 3: Modelos de Oligopolio. Modelos de empresa dominante y de competencia monopolística Modelo de empresa Dominante: Hipótesis: Las empresas de la."— Transcripción de la presentación:

1 TEMA 3: Modelos de Oligopolio

2 Modelos de empresa dominante y de competencia monopolística Modelo de empresa Dominante: Hipótesis: Las empresas de la franja de la competencia (empresas pequeñas) se comportan como precio aceptantes produciendo la cantidad que iguala el precio al coste marginal. price marker La empresa dominante se comporta como una empresa con poder sobre los precios (price marker) tomando la estrategia de la franja de la competencia como un dato.

3 Modelos de empresa dominante y de competencia monopolística Para cualquier precio fijado por la empresa dominante, la cantidad vendida por esta empresa iguala la diferencia entre la demanda de mercado y la cantidad ofrecida por la franja de la competencia.

4 Modelos de empresa dominante y de competencia monopolística Modelo: D(p) demanda total. F(p) función de oferta de la franja de la competencia (suma horizontal de las curvas de coste marginal). La empresa dominante trata de maximizar el beneficio, que dada una función de coste lineal y siendo el coste marginal c, viene dado por :

5 Modelos de empresa dominante y de competencia monopolística

6 Donde: D ( D/ p)(p/d): Elasticidad de la demanda. F ( F/ p)(p/F): Elasticidad de la oferta de la franja de la competencia. s F F/D: Cuota de mercado de la franja de la competencia.

7 Modelos de empresa dominante y de competencia monopolística Ya que en monopolio se tenía (p-c)/p=1/ D el equilibrio de la empresa dominante corresponde a una situación de monopolio atenuado. La franja de la competencia actúa como traba al poder de monopolio de la empresa dominante: Cuanto mayor sea la cuota de mercado de la franja de la competencia y/o la elasticidad de su oferta, tanto menor será el poder de mercado de la empresa dominante.

8 Modelos de empresa dominante y de competencia monopolística Cuando la franja de la competencia es común a mercados con varias empresas dominantes se habla de grupos estratégicos (un grupo de empresas líderes y un grupo de empresas marginales).

9 Modelos de empresa dominante y de competencia monopolística El modelo de competencia monopolística (Chamberlin): El número de empresas es grande la estrategia de cada empresa tiene un impacto despreciable en las restantes empresas.

10 Modelos de empresa dominante y de competencia monopolística La diferenciación del producto hace que la curva de demanda a la que se enfrenta cada empresa no sea horizontal cada empresa es un price marker. Que el producto no sea homogéneo no implica que la libre entrada conlleve beneficios nulos a l/p, si bien este equilibrio no es eficiente.

11 Modelos de empresa dominante y de competencia monopolística

12 La existencia de diferenciación de producto se traduce en que la curva de demanda a la que se enfrenta cada empresa d, tiene pendiente negativa.La entrada libre a largo plazo se incorporan empresas hasta que la curva de demanda a la que se enfrenta cada empresa sea tangente a la curva de Costes medios totales. En ese punto el beneficio de cada empresa activa es máximo y nulo, consiguiéndose el equilibrio.

13 Modelos de empresa dominante y de competencia monopolística El equilibrio de competencia monopolística es ineficiente en cuanto al coste de producción Cada empresa produce una cantidad menor cuanto mayor sea el grado de diferenciación del producto (mayor la pte de d). En equilibrio el precio fijado por cada empresa es superior al coste marginal.

14 Modelos de empresa dominante y de competencia monopolística Esto no implica que el equilibrio sea socialmente ineficiente, ya que debe tenerse en cuenta la variedad, que depende del número de empresas y no sólo de las cantidades totales. Debe cuantificarse el dominio de un efecto sobre otro desde el punto de vista social (minimización de costes o aumento de la variedad).

15 Introducción a la teoría de juegos El oligopolio se caracteriza por la interdependencia entre las acciones de las diferentes empresas, por lo que la Teoría de juegos (estudio formal de las relaciones estratégicas entre agentes) tiene una gran importancia.

16 Introducción a la teoría de juegos Inicio formal de una situación de comportamiento estratégico: Formulación de un juego. (Ver cuadro) Un juego está constituido por: Un conjunto de (2) jugadores.(1: línea, 2: columna) Un conjunto de estrategias posibles para cada jugador (a y b para el primer jugador y c y d para el jugador 2). Un conjunto de reglas ( cada jugador escoge independiente de la estrategia del otro)..

17 Introducción a la teoría de juegos El comportamiento esperado de cada agente racional cuando interactúa con otros agentes, depende del concepto de solución: método que permite, partiendo de la formulación del juego, llegar a un conjunto de estrategias, una para cada jugador que corresponda a lo que es previsible que cada jugador racional escoja.

18 Introducción a la teoría de juegos El concepto más aplicado es el equilibrio de Nash (o Nash- Cournot o equilibrio estratégico): Un vector de estrategias constituye un equilibrio de Nash si ningún jugador puede mejorar en sentido estricto su utilidad a través de un cambio unilateral de estrategia ((b, c ) en el ejemplo).

19 Introducción a la teoría de juegos

20 Desarrollo del modelo de Cournot Inicio : Situación de duopolio (posteriormente se hace extensible para n>2). Hipótesis: 1.El producto de las empresas es homogéneo. 2.El precio único de mercado resulta de la oferta agregada de las empresas.

21 Desarrollo del modelo de Cournot 3. Las empresas determinan simultáneamente la cantidad ofrecida. Desde el punto de vista de la Teoría de Juegos: La variable estratégica manipulada por cada empresa es la cantidad producida. Las cantidades son escogidas simultáneamente.

22 Desarrollo del modelo de Cournot El beneficio de cada empresa es función de la cantidad producida por esa empresa y del precio de mercado, que a su vez es función de la cantidad producida por ambas empresas. El equilibrio del mercado viene dado por el equilibrio de Nash(- Cournot).

23 Desarrollo del modelo de Cournot Derivación geométrica: Consideración aislada del problema de maximización de una empresa dada (Ejemplo empresa 1). Supuesto: Esta empresa espera que la empresa 2 produzca q 2.

24 Desarrollo del modelo de Cournot El problema de maximización de la empresa 1 es semejante al de un monopolista que se enfrenta a una demanda residual d 1 (q 2 )=D-q 2. Dada una curva de coste marginal (constante), basta derivar la curva de in ingreso marginal y resolver R´=C´ para determinar el óptimo de la empresa 1, q 1 *(q 2 ).

25 Desarrollo del modelo de Cournot Este óptimo es condicional al estar determinado por el valor de q 2, para cada expectativa diferente que la empresa 1 tenga de la producción de la empresa 2, la empresa 1 hará una elección óptima diferente. Función mejor respuesta o función reacción de la empresa 1 en relación a la empresa 2 Función mejor respuesta o función reacción de la empresa 1 en relación a la empresa 2:Función q 1 *(q 2 ) que relaciona las elecciones óptimas con las diferentes expectativas relativas a las cantidades de la empresa rival.

26 Desarrollo del modelo de Cournot

27 Derivación de la función de reacción de la empresa 1: Consideración de dos casos extremos en relación a q 2. Si q 2 =0, la demanda residual a la que se enfrenta la empresa 1 coincide con la demanda de mercado. La reacción óptima de esta empresa es producir la cantidad de monopolio, q i *(0)=Q M.

28 Desarrollo del modelo de Cournot Si la empresa 2 produce el nivel de producción competitivo q 2 =Q C, donde Q C es tal que D -1 (Q C )=C´=c el óptimo de la empresa es no producir, q i *(Q C )=0. Si las curvas de demanda y costes son lineales también lo es la función de reacción.

29 Desarrollo del modelo de Cournot

30

31 Si la empresa 2 dispone de una tecnología idéntica a la de la empresa 1 (tiene la misma función de coste), lo dicho para la empresa 1 es aplicable a la empresa 2 La función de reacción q 2 *(q 1 ) es simétrica a q 1 *(q 2 ) respecto a la diagonal principal.

32 Desarrollo del modelo de Cournot El equilibrio de Nash Cournot viene dado por el punto E (único punto en el que ambas empresas escogen una cantidad que es óptima dada la cantidad de la empresa rival.

33 Desarrollo del modelo de Cournot

34 Interpretación dinámica del modelo de Cournot: Aunque el modelo de Cournot sea estático, el equilibrio derivado se puede interpretar como el resultado de un proceso de ajuste. Si se supone que la empresa 1 en cada periodo impar escoge la cantidad q 1 t =q 1 *(q 1 t-1 ) reacción óptima en relación a la cantidad producida por el rival en el periodo anterior.

35 Desarrollo del modelo de Cournot Suponemos que ocurre lo mismo en los periodos pares con la empresa 2. Cualquiera que sea el punto de partida, las cantidades convergen hacia el equilibrio de Nash-Cournot.

36 Desarrollo del modelo de Cournot Comparación entre Cournot, monopolio y competencia perfecta (A través de las funciones de reacción): Las funciones de reacción intersectan con los ejes en los valores Q M y Q C, a los que corresponden los lugares geométricos q 1 +q 2 =Q M y q 1 +q 2 =Q C.

37 Desarrollo del modelo de Cournot Por comparación con el equilibrio de Nash: La cantidad total en el equilibrio de Nash-Cournot q 1 N +q 2 N =Q N, esta comprendida entre la cantidad de monopolio y la cantidad de competencia perfecta.

38 Desarrollo del modelo de Cournot

39 Derivación algebraica: Sea P=a-bQ, la inversa de la función de demanda Q=q 1 +q 2. Se supone que el coste marginal de cada empresa es constante e igual a c. El beneficio de cada empresa viene dado por:

40 Desarrollo del modelo de Cournot La condición necesaria para la maximización de beneficios viene dada por: a-bq 1 -bq 2 -c-bq 1 =0 Agrupando términos: 2bq 1 =a-bq 2 -c Donde:

41 Desarrollo del modelo de Cournot El equilibrio de Nash-Cournot, viene dado por el sistema q i =q i *(q j ), en este caso:

42 Desarrollo del modelo de Cournot Los sistemas lineales simétricos sólo admiten soluciones simétricas, por tanto:

43 Desarrollo del modelo de Cournot Además:

44 Desarrollo del modelo de Cournot El precio en monopolio era:P M =(a/2)+(c/2). El precio de competencia perfecta viene dado: P C =c. Puesto que P N, P M y P C, con combinaciones convexas de a y c, dado que a>c, se confirma: P M >P N >P C

45 Desarrollo del modelo de Cournot Caso de 2: El beneficio de la empresa 1 viene dado por: Donde la función de reacción:

46 Desarrollo del modelo de Cournot Resolviendo el sistema para hallar la solución simétrica (q i =q N ) se obtiene:

47 Desarrollo del modelo de Cournot Propiedades de equilibrio: A medida que el número de empresas aumenta, el precio de equilibrio se aproxima al precio de equilibrio de competencia perfecta, esto es:

48 Desarrollo del modelo de Cournot Este resultado formaliza la idea de que el modelo de competencia perfecta debe ser entendido como un punto de referencia al que se aproximan mejor o peor los mercados reales. Se puede afirmar que mercados con estructura próxima a la competencia perfecta (número infinito de empresas) tiene un precio también más cercano a la competencia perfecta.

49 Desarrollo del modelo de Cournot

50 La pérdida de eficiencia (PE) del equilibrio de Cournot en relación al óptimo social es el área A. Algebraicamente:

51 Desarrollo del modelo de Cournot La pérdida de eficiencia converge hacia el valor de competencia perfecta (0) a medida que n. La tasa de convergencia del precio es la misma que n, la pérdida de eficiencia converge rápidamente a cero.

52 Desarrollo del modelo de Cournot

53 Oligopolio asimétrico: Con demanda y costes lineales, la función de reacción de la empresa i viene dada por: Con c i =c j =c

54 Desarrollo del modelo de Cournot

55 Si la empresa 1 consigue un avance tecnológico que el permite reducir el coste de producción de c a c´, mientras que la empresa 2 mantiene su coste marginal constante c 2 =c, Desplazamiento de la función de reacción q 1 *(q 2 ), hacia fuera.

56 Desarrollo del modelo de Cournot El equilibrio se desplaza de E 0 a E 1, donde la empresa 1 aumenta la cantidad, mientras que la empresa 2 la reduce. Este transito supone una mejora de eficiencia, por lo que parece que el oligopolio asimétrico es más eficiente que el oligopolio simétrico.

57 Desarrollo del modelo de Cournot Si se supone que ambas empresas tenían costes c´ el punto inicial sería E´ 0, por lo que el incremento de los costes de c a c´ llevaría al punto E 1 menos eficiente que el anterior. La eficiencia del oligopolio asimétrico con respecto al simétrico depende del equilibrio inicial con el que se compare.

58 Desarrollo del modelo de Cournot En cualquier caso si una empresa reduce sus costes con respecto a la otra, es más eficiente que aumente su producción. Suponiendo que la empresa 1 tiene costes bajos c´, y la empresa 2 costes altos c, la eficiencia máxima del mercado se obtiene en E 2, donde la empresa 1 produce todo a un precio igual al coste marginal.

59 Desarrollo del modelo de Cournot Relación entre estructura y resultados: En una situación de monopolio, el índice de Lerner, que mide el poder sobre los precios de un mercado viene dado por:

60 Desarrollo del modelo de Cournot La función de beneficio de la empresa i está dada por: - Donde P es la inversa de la función de demanda. - C i es la función de coste total de la empresa i.

61 Desarrollo del modelo de Cournot La C.P.O para la maximización del beneficio viene dada por: P´q i +P-C´ i =0 o simplemente: P-C´ i =-P´q i Donde P´=dP/dP

62 Desarrollo del modelo de Cournot Definiendo el índice de Lerner de la empresa i como:

63 Desarrollo del modelo de Cournot Definiendo el índice de Lerner del mercado como la media ponderada:

64 Desarrollo del modelo de Cournot Se produce una relación entre la estructura y los resultados dado un cierto patrón de comportamiento. Una versión más general de esta ecuación se conoce como fórmula de Cowling-Waterson.

65 El modelo de Bertrand Modelo: Mismas hipótesis que el modelo de Cournot pero sustituyendo la cantidad por el precio como variable estratégica.

66 El modelo de Bertrand

67 La demanda residual a la que se enfrenta la empresa 1 dado un determinado precio p 2, fijado por la empresa rival. Si p 1 >p 2, entonces la demanda dirigida a la empresa 1 sería nula, suponiendo que la empresa 2 satisface toda la demanda que le es dirigida.

68 El modelo de Bertrand Si p 1 =p 2, entonces la demanda se dividiría entre las dos empresas. Si p 1


69 El modelo de Bertrand Supuesto: c

p 2 entonces 1 =0. Si p 1 =p 2 entonces 1 = (p 1 -c)D(p 1 )/2. Si p 1


70 El modelo de Bertrand Al fijar p 1

p 2.

71 El modelo de Bertrand Si p 2 fuese superior al precio de monopolio, entonces la solución óptima de la empresa 1 consiste en fijar el precio de monopolio, recibiendo así el beneficio de monopolio. Si p 2 fuese inferior a c (coste marginal y medio de la empresa 1) entonces lo mejor para la empresa 1 es fijar p 1 =c siendo el beneficio igual a 0.

72 El modelo de Bertrand En resumen la función de reacción de la empresa 1 viene dada por :

73 El modelo de Bertrand

74 Suponiendo que la empresa 2 tiene la misma tecnología que la empresa 1, la función de reacción de la empresa 2 será simétrica en relación a la bisectriz del primer cuadrante. El equilibrio de Nash, dado por la intersección de las funciones de reacción, corresponde a p 1 B =p 1 A =c El precio y las cantidades de equilibrio en el modelo de Bertrand (con empresas idénticas) son iguales a los valores de competencia perfecta.

75 El modelo de Bertrand Al igual que en el modelo de Cournot la convergencia hacia los valores de competencia perfecta se cumple de una forma relativamente rápida.

76 El dilema de Cournot - Bertrand El resultado de que las empresas fijen precios y no cantidades si los costes marginales fuesen constantes o iguales entre las empresas, entonces bastan dos empresas para que el precio de equilibrio se iguale al precio de competencia perfecta, siendo la perdida de eficiencia en equilibrio nula.

77 El dilema de Cournot - Bertrand En este sentido el modelo de Cournot resulta más satisfactorio, ya que es contraria a la idea convencional de que la eficiencia del mercado aumenta gradualmente con el número de empresas y que tiende al máximo cuando el número de empresas tiende a infinito.

78 El dilema de Cournot - Bertrand Este dilema se puede resolver de tres formas: 1.Abandonado la idea de que el producto es homogéneo, suponiendo que hay diferenciación en el producto. 2.Siguiendo un análisis explícitamente dinámico de la competencia oligopolística. 3.Abandonando la hipótesis de costes marginales constantes.

79 El dilema de Cournot - Bertrand El extremo opuesto a esta hipótesis es el de restricciones de capacidad, cuando los costes marginales tienden a infinito cuando la cantidad excede un cierto nivel.

80 El dilema de Cournot - Bertrand Competencia en precios con restricción de capacidad: El nivel de producción de las empresas es limitada. Si el nivel de producción se incrementa mucho, entonces las empresas tienden a recurrir a horas extraordinarias, aumentando el número de turnos un incremento de los costes marginales. A partir de un cierto nivel, se hace imposible en el corto plazo incrementar la producción.

81 El dilema de Cournot - Bertrand Formalización Formalización: supuesto de costes marginales constantes hasta cierto nivel de producción (k) que se hacen infinitos a partir de es nivel de producción. Se considera un duopolio con dos fases.

82 El dilema de Cournot - Bertrand En la primera fase, las dos empresas escogen sus capacidades k i, i=1,2. En la segunda fase ambos escogen los precios. Simplificamos suponiendo que existe un cierto coste de instalar capacidades C i (k i ), y el coste de producción es nulo, siempre que qi ki.

83 El dilema de Cournot - Bertrand

84 Las empresas tomas decisiones en el: -Largo plazo (capacidad de producción). -A corto plazo (precio de venta). El producto es homogéneo La empresa que fije un precio menor podrá satisfacer toda la demanda.

85 El dilema de Cournot - Bertrand Como las empresas tiene restricciones de capacidad, no pueden vender más de k i, la demanda dirigida a la empresa con un precio superior, empresa i, no es necesariamente nula, sino que vendrá dada por max{0, D(p i )-k j }.

86 El dilema de Cournot - Bertrand Si la empresa j que fija un precio inferior puede satisfacer toda la demanda (D(p i )k i ), la demanda dirigida a la empresa i viene dada por la demanda de mercado menos el valor de k j.

87 El dilema de Cournot - Bertrand Los precios fijados en el segundo periodo son iguales y la capacidad de producción de ambas empresas es totalmente utilizada( p i =p j =P(k 1 +k 2 )), donde P(.) es la inversa de la función de demanda.

88 El dilema de Cournot - Bertrand El juego así considerando las dos fases es equivalente al de un juego en el que las empresas fijan capacidades k i y venden q i =k i a un precio dado por P(k 1 +k 2 )=P(q 1 +q 2 ). El equilibrio del juego de dos fases es como el equilibrio de Cournot, reinterpretando las cantidades fijadas por las empresas como las correspondientes a las capacidades de producción.

89 El dilema de Cournot - Bertrand Si las empresas fijan primero precios y después las capacidades de producción y C i (k i )=ck i como p i c, la empresa i instalará la capacidad k i necesaria para satisfacer la demanda que le toca, siendo el resultado equivalente al modelo de Bertrand, con la reinterpretación de cantidades.

90 El dilema de Cournot - Bertrand Para que el modelo tenga sentido hay que considerar primero la decisión a largo plazo, y posteriormente la de corto plazo, al utilizarse ésta como un dato de la 1ª.

91 El dilema de Cournot - Bertrand modelo de Cournot En resumen: Los mercados en los que los precios se ajustan más rápidamente que las cantidades se aproximan más al modelo de Cournot. modelo de Bertrand Por el contrario, los mercados en los que las cantidades se ajustan más rápidamente que los precios se aproximan más al modelo de Bertrand.

92 El modelo de Stackelberg no significa En el modelo de Cournot la simultaneidad de las elecciones de capacidad de todas las empresas no significa que las decisiones de las empresas se den simultáneamente en el tiempo. Lo relevante es que cada empresa desconozca la decisión de las empresas rivales en el momento en el que toman la suya.

93 El modelo de Stackelberg La secuencialidad en la toma de decisiones puede ser muy realista cuando una de las empresas se destaque como lider natural del mercado, o cuando una empresa se instaló con demasiada antelación con respecto a las otras en el mercado.

94 El modelo de Stackelberg El modelo de Stackelberg se corresponde con el de Cournot en sus hipótesis con la diferencia de que las elecciones de la cantidad son secuenciales y no simultáneas. Modelo: 2 empresas, demanda y costes ambos lineales.

95 El modelo de Stackelberg Al comportarse las empresas como jugadores racionales, la empresa 1 (líder) escoge su cantidad en función de la cantidad que escoja la empresa 2, que a su vez es función de la cantidad escogida por la empresa 1.

96 El modelo de Stackelberg La elección óptima de la empresa 2, en la segunda fase q 2 *(q 1 ), donde q 1 es la cantidad escogida por la empresa 1 en la primera fase. La elección óptima de la empresa 1 consiste en el punto de la curva q 2 *(q 1 ) al que corresponde el mayor beneficio para la empresa 1.

97 El modelo de Stackelberg La determinación geométrica de ese punto se facilita con la utilización de las curvas de isobeneficio de la empresa 1. La curva isobeneficio de la empresa 1, es el lugar geométrico de los puntos que, en el mapa de las cantidades (q 1, q 2 ), corresponden el mismo nivel de beneficio de la empresa 1.

98 El modelo de Stackelberg Considerando que q 2 =0, el beneficio máximo de la empresa 1 se obtiene con q1=q M. Como M (beneficio de monopolio), es el máximo beneficio que la empresa puede obtener cuando q 1 =q M y q 2 =0, tenemos una curva de isobeneficio, correspondiente al punto (q M,0).

99 El modelo de Stackelberg La segunda función isobeneficio viene dada por los puntos que satisfacen (q i ´,0), (q i ´´,0) tales que 1 = ´. Suponiendo q 2 >0, como el beneficio de la empresa 1 es decreciente en q 2, para que se mantenga el beneficio de la empresa 1 a partir de (q i ´,0), (q i ´´,0) es necesario que se de una aproximación de q 1 a q M, que compense el crecimiento de q 2 la curva de isobeneficio 1 = ´debe tener pendiente negativa en (q i ´´,0) y positiva en (q i ´,0).

100 El modelo de Stackelberg Repitiendo el proceso se obtiene el mapa de curvas de isobeneficio. Cuanto más próximo esté la curva de isobeneficio a (q M,0) mayor será el beneficio correspondiente. El óptimo de la empresa líder vendrá dado por el punto de tangencia de una curva isobeneficio con la función de reacción de la empresa 1.

101 El modelo de Stackelberg

102

103 Diferencias entre el modelo de Cournot y Stackelberg: El equilibrio de Cournot corresponde a la intersección de las funciones de reacción. Las funciones de reacción dan los valores para q i que maximizan el beneficio de la empresa i dado el valor de q j. El valor q i *(q 2 ), corresponde a la tangencia de la recta q 2 =q 2 ´ con una curva de isobeneficio de la empresa 1.

104 El modelo de Stackelberg En el equilibrio de Cournot, la empresa 1 elige la cantidad óptima dada la cantidad escogida por la empresa 2. En el equilibrio de Stackelberg, la cantidad escogida por la empresa 1 es superior al valor óptimo dada la cantidad escogida por la empresa 2. La empresa 1 aprovechando su liderazgo, escoge una cantidad elevada como forma de inducir a la empresa 2 a escoger una cantidad inferior.

105 El modelo de Stackelberg La cantidad total en el equilibrio de Stackelberg es superior a la cantidad total en el equilibrio de Cournot. En el equilibrio de Stackelberg la empresa 1 produce más y la empresa 2 produce menos que en el equilibrio de Cournot, pero el aumento de la empresa 1 es mayor que el descenso de la empresa 2.

106 El modelo de Stackelberg

107 Modelos dinámicos Forma general del modelo: En la primera fase las empresas están dispuestas a invertir K i. Esta inversión no sólo afecta a los beneficios en el primer periodo, sino también a los datos que influirán en la competencia en el segundo periodo.

108 Modelos dinámicos En el segundo periodo las empresas compiten entre si sabiendo ya las inversiones de la primer etapa (interés de la competencia intertemporal en la determinación de la inversión óptima de cada empresa). La condición óptima para la empresa i viene dada, suponiendo una tasa de descuento nula por:

109 Modelos dinámicos Donde x i t es la variable estratégica escogida por la empresa i en el periodo t. El primer término de la izquierda es el efecto total de la inversión en el beneficio de la empresa en el primer periodo.

110 Modelos dinámicos El segundo término corresponde al efecto directo de la inversión sobre el beneficio en el segundo periodo. El tercer término tiene el valor cero en equilibrio por el Teorema de la Envolvente. El último término representa el efecto estratégico: una inversión por parte de la empresa i afecta a las expectativas de la empresa j en el segundo periodo, que a su vez afecta al beneficio de equilibrio de la empresa i en el mismo periodo.

111 Modelos dinámicos Modelo de curva de experiencia: Definición: Relación negativa entre el coste y la producción pasada acumulada. La inversión K consiste en la producción en el primer periodo. El efecto de la inversión en los beneficios se da a través de la variación del coste en el segundo periodo, es decir, el coste de la empresa i en el segundo periodo es una función decreciente de su producción en el primer periodo.

112 Modelos dinámicos Llamando c i t y q i t al coste marginal y la cantidad de la empresa i en el periodo t respectivamente, en el periodo t se cumple x j 2 =q j 2 y K i =q i 1 El efecto estratégico se refleja en:

113 Modelos dinámicos El beneficio de la empresa i es una función decreciente de la cantidad producida por la empresa j. La cantidad producida por la empresa j es en equilibrio, una función creciente del coste de la empresa i. El coste de la empresa i en el segundo periodo es una función decreciente de la cantidad producida por la misma empresa en el primer periodo.

114 Modelos dinámicos El efecto estratégico es en el caso de la curva de experiencia positivo. La empresa elige el nivel de inversión superior a la cantidad elegida en ausencia de comportamiento estratégico.


Descargar ppt "TEMA 3: Modelos de Oligopolio. Modelos de empresa dominante y de competencia monopolística Modelo de empresa Dominante: Hipótesis: Las empresas de la."

Presentaciones similares


Anuncios Google