La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

FISIOLOGÍA DEL EJERCICIO

Presentaciones similares


Presentación del tema: "FISIOLOGÍA DEL EJERCICIO"— Transcripción de la presentación:

1 FISIOLOGÍA DEL EJERCICIO

2 En el ejercicio hay contracción muscular

3 La contracción se debe al deslizamiento de los filamentos de actina y miosina

4 La contracción muscular puede producir fuerza o acortamiento

5 La contracción muscular consume ATP
+ Las reservas de ATP del músculo duran 3 segundos durante un ejercicio intenso

6 El ATP se puede producir a partir de fosfocreatina
ADP Las reservas de fosfocreatina del músculo duran 8-10 segundos durante un ejercicio intenso

7 la glucolisis anaerobia puede funcionar durante 1.3 – 1.6 minutos
El ATP se puede producir por glicolisis anaerobia de la glucosa ATP ADP glucosa lactato la glucolisis anaerobia puede funcionar durante 1.3 – 1.6 minutos

8 O2 CO2 Ácidos grasos glucosa
El ATP se puede producir por metabolismo aerobio de ácidos grasos o glucosa O2 Ácidos grasos CO2 glucosa El metabolismo aerobio puede funcionar durante horas (hasta que se terminan las reservas de nutrientes)

9 Las reservas de lípidos son más grandes que las de glucosa, pero producen energía más lentamente

10 El músculo utiliza distintas fuentes de energía según la intensidad o duración del ejercicio

11 fosfocreatina Glucolisis anaerobia Metabolismo aerobio
El músculo utiliza distintas fuentes de energía según la intensidad o duración del ejercicio 100 m segundos fosfocreatina 4 mol ATP/min natación minutos Glucolisis anaerobia maratón 2.5 mol ATP/min 1 mol ATP/min Metabolismo aerobio horas

12 El consumo de oxígeno (VO2) aumenta con el ejercicio

13 Glucolisis anaerobia Metabolismo aerobio Glucolisis anaerobia
El consumo máximo de oxígeno (max VO2) indica la capacidad de realizar ejercicio aerobio Glucolisis anaerobia Metabolismo aerobio maxVO2 Glucolisis anaerobia maxVO2 Metabolismo aerobio

14 El umbral láctico es un indicador de la capacidad de producir energía por la vía aerobia

15 Consumo de O2 trabajo deuda de O2 tiempo
Después del ejercicio el consumo de oxígeno permanece aumentado durante cierto tiempo Consumo de O2 trabajo deuda de O2 tiempo

16 La ventilación aumenta proporcionalmente al consumo de oxígeno

17 Primero aumenta el volumen corriente y luego la frecuencia respiratoria
El volumen corriente puede aumentar hasta ser un 60% de la capacidad vital

18 Intensidad del esfuerzo
En un ejercicio moderado no se modifican los gases en sangre arterial ventilación arterial pCO2 arterial pH lactato arterial pO2 Intensidad del esfuerzo

19 ¿quimiorreceptores venosos?
¿Por qué aumenta la ventilación si los gases en la sangre arterial no varían? ¿quimiorreceptores venosos? Estímulo motor Receptores musculares

20 Intensidad del esfuerzo
En un ejercicio intenso aumenta la ventilación por estímulo de los quimiorreceptores ventilación arterial pCO2 arterial pH lactato arterial pO2 Intensidad del esfuerzo

21 El umbral ventilatorio es un indicador indirecto del umbral láctico

22 En el ejercicio se produce vasodilatación muscular

23 En el ejercicio se produce vasodilatación muscular
Adenosina, CO2, K+, H+ hipoxia temperatura simpático

24 Una contracción mantenida intensa de los músculos interrumpe el flujo sanguíneo

25 En el ejercicio se produce aumento del gasto cardiaco, de la frecuencia cardiaca y del volumen sistólico

26 Aumento de frecuencia cardiaca y fuerza de contracción
En el ejercicio se produce aumento del gasto cardiaco, de la frecuencia cardiaca y del volumen sistólico Inhibición vagal Estímulo simpático Aumento de frecuencia cardiaca y fuerza de contracción

27 El aumento de la frecuencia comienza antes del ejercicio

28 Aumento del retorno venoso
En el ejercicio se produce aumento del gasto cardiaco, de la frecuencia cardiaca y del volumen sistólico Estímulo simpático Dilatación arterial Aumento del retorno venoso

29 CORAZÓN TRANSPLANTADO
Durante el ejercicio aumenta el gasto cardiaco en un corazón denervado debido al aumento del retorno venoso CORAZÓN TRANSPLANTADO NORMAL Volumen sistólico Frecuencia cardiaca Gasto cardiaco ejercicio ejercicio

30 Durante el ejercicio se modifica la distribución del flujo sanguíneo

31 Durante el ejercicio prologado se produce vasodilatación cutánea y sudoración para eliminar el exceso de calor

32 Cuando aumenta la temperatura en el hipotálamo se activa la sudoración y la vasodilatación cutánea

33 Durante el ejercicio prolongado, inicialmente el flujo sanguíneo cutáneo disminuye, pero luego aumenta cuando aumenta la temperatura central

34 Durante el ejercicio debe aumentar el flujo sanguíneo a los músculos y a la piel

35 El ejercicio disminuye la sensibilidad del hipotálamo al aumento de temperatura central

36 En el ejercicio aumenta la presión arterial

37 La presión arterial aumenta más en el ejercicio isométrico

38 En el levantamiento de peso la presión sistólica puede disminuir por el efecto Valsalva
El aumento de la presión intratorácica comprime la vena cava y disminuye el retorno venoso

39 En el ejercicio disminuye la afinidad de la hemoglobina en los tejidos
músculo pulmón O2 O2 pH Temperatura 2,3 DPG

40 Arterial pO2 venosa pO2 Arterial pO2 venosa pO2
En el ejercicio aumenta la diferencia arteriovenosa de oxígeno Arterial pO2 venosa pO2 Arterial pO2 venosa pO2

41 Extracción de O2 (3 veces)
Todos los factores contribuyen a un gran aumento de aporte de oxígeno al músculo Extracción de O2 = PO2 arterial – pO2 venosa Flujo sanguíneo = presión arterial media / resistencia vascular Presión arterial media = gasto cardiaco x resistencia total periférica Gasto cardiaco = frecuencia cardiaca x volumen sistólico pO2 arterial constante Frecuencia Cardiaca (3 veces) Extracción de O2 (3 veces) pO2 venosa Gasto Cardiaco (5 veces) aporte de O2 (100 veces) Volumen Sistólico (50 %) Presión arterial (30%) Flujo sanguíneo (30 veces) Resistencia total vasodilatación músculo (25 veces)

42 Extracción de O2 (3 veces)
En la insuficiencia cardiaca el corazón limita el esfuerzo que se puede realizar Extracción de O2 = PO2 arterial – pO2 venosa Flujo sanguíneo = presión arterial media / resistencia vascular Presión arterial media = gasto cardiaco x resistencia total periférica Gasto cardiaco = frecuencia cardiaca x volumen sistólico pO2 arterial constante Extracción de O2 (3 veces) pO2 venosa Gasto Cardiaco No aumenta aporte de O2 (solo 3 veces) Presión arterial Flujo sanguíneo aumenta poco Resistencia total vasodilatación músculo (25 veces)

43 El entrenamiento resistivo produce aumento de la fuerza

44 El entrenamiento resistivo prolongado produce hipertrofia muscular

45 Cambios fisiológicos con el entrenamiento resistivo

46 La testosterona favorece la hipertrofia muscular

47 El entrenamiento aerobio produce aumento del consumo máximo de oxígeno

48 El entrenamiento aerobio produce hipertrofia cardiaca
control ciclista

49 Durante el ejercicio aumenta el gasto cardiaco más en un sujeto entrenado que en uno sedentario
Volumen sistólico = 70 ml REPOSO Gasto cardiaco = 5 L/min Frecuencia cardiaca = 70 lat/min SEDENTARIO Volumen sistólico = 115 ml EJERCICIO Gasto cardiaco = 21 L/min Frecuencia cardiaca = 180 lat/min Volumen sistólico = 130 ml REPOSO Gasto cardiaco = 5 L/min Frecuencia cardiaca = 40 lat/min ATLETA Volumen sistólico = 170 ml EJERCICIO Gasto cardiaco = 31 L/min Frecuencia cardiaca = 180 lat/min

50 Para un mismo nivel de ejercicio la frecuencia es menor en el sujeto entrenado

51 El entrenamiento aerobio tiende a disminuir la presión arterial

52 Cambios en el aparato respiratorio con el entrenamiento aerobio
Aumenta el volumen corriente Disminuye la frecuencia respiratoria Disminuye el consumo de oxígeno y el lactato en los músculos respiratorios

53 ATP FOSFOCREATINA CREATINA + Pi FATIGA
En un ejercicio intenso disminuye la excitabilidad del músculo FOSFOCREATINA CREATINA + Pi ATP

54 FATIGA Un ejercicio prolongado produce agotamiento de las reservas de glucógeno


Descargar ppt "FISIOLOGÍA DEL EJERCICIO"

Presentaciones similares


Anuncios Google