La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Funciones Presentado por: Tammy Roterman y Orli Glogower Presentado a: Patricia Cáceres Décimo Grado.

Presentaciones similares


Presentación del tema: "Funciones Presentado por: Tammy Roterman y Orli Glogower Presentado a: Patricia Cáceres Décimo Grado."— Transcripción de la presentación:

1 Funciones Presentado por: Tammy Roterman y Orli Glogower Presentado a: Patricia Cáceres Décimo Grado

2 Funciones Definición Características Formas de expresar Funciones Inyectivas, Sobreyectivas y Biyectivas Funciones Pares e Impares Tipos

3 Función Definición Una función es una relación entre un conjunto dado X (el dominio) y otro conjunto de elementos Y (el rango) de manera que a cada elemento x del dominio le corresponda uno y solo un elemento del rango f(x). A cada Pre Imagen le corresponde una sola y solo una Imagen.

4 Formas de expresar una función Una función se puede expresar de 4 distintas formas:expresar Enunciado Algebraicamente Gráfica Tabla

5 Una función se expresa a través de una tabla, cuando se dan algunos valores de X con los valores correspondientes de Y.tabla X Y Ejemplo:

6 Una función se expresa a través de un enunciado cuando se describe verbalmente.enunciado Ejemplo: Una función, es la relación entre los elementos del dominio y los del rango.

7 Una función se expresa a través de una formula o expresión algebraica cuando se da una ecuación en la que se relacionan las variables X y Y. formula o expresión algebraica f(x)= 2X + 4 f(x)= 4X 2 – 3X + 8 f(x)= X 3 + 2X 2 – 4X + 3 Ejemplo:

8 Una función se expresa a través de una gráfica, cuando se representan los pares (x,y) en el plano cartesiano. gráfica Ejemplo:

9 Variable dependiente Variable independiente Imagen Pre Imagen Conjunto de salida Conjunto de llegada Dominio Rango Punto de corte con X Punto de corte con Y Crecimiento Periodicidad Máximos y mínimos Características de las funciones

10 Son los posibles valores del conjunto de llegada. La variable dependiente se llama Y. Son los posibles valores del conjunto de salida. La variable independiente se llama X. Características

11 Los elementos principales de una función son los posibles valores que pueden tomar ambas variables. Estos valores son llamados Imágenes y Pre Imágenes. Imagen: Los valores del conjunto de llegada que se relacionan con los valores del conjunto de salida. Pre Imagen: Los valores del conjunto de salida que se relacionan con los valores del conjunto de llegada. a 1 b 2 c 3 4 Y X f Características

12 Rango: Conjunto de elementos del conjunto de llegada que están relacionadas con un valor del conjunto de salida. Dominio: Conjunto de elementos del conjunto de salida que están relacionadas con algún elemento del conjunto de llegada. Características

13 Conjunto de Salida: Conjunto de Pre Imágenes. Conjunto de Llegada: Conjunto de Imágenes. Características

14 Punto de corte con X: Se halla cuando Y=0. Se iguala la función a 0, o se factorisa. Punto de corte con Y: Se halla cuando X=0. Se reemplaza X por 0. Características

15 Crecimiento: Función creciente: Es creciente cuando al aumentar los valores de X, aumenta Y. Función decreciente: Es decreciente, cuando al aumentar los valores de X, disminuye Y. Periodicidad: Una función es periódica, si su gráfica se repite en intervalos de amplitud constante. Periodo: Longitud del intervalo que se repite. Máximos y mínimos: Máximo relativo: Es un punto en el que el valor de la función es mayor que en los puntos que están próximos. Mínimo relativo: Es un punto en el que el valor de la función es menor que en los puntos que están próximos. Características

16 Funciones Inyectivas: Una función es Inyectiva si a cada valor del dominio le corresponde un valor del rango. No puede haber dos o mas elementos del dominio con la misma imagen. Funciones Sobreyectivas: Una función es Sobreyectiva si cada elemento del rango es como mínimo la imagen de un elemento del domino DBCADBCA XY DBCDBC XY

17 Función Biyectiva: Una función es Biyectiva cuando todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada (inyectiva), sumándole que a cada elemento del conjunto de salida le corresponde un elemento del conjunto de llegada (sobreyectiva) DBCADBCA XY

18 Función Impar: Se llama función impar a la que para todo x perteneciente al Dominio de la función, se cumple que: Se produce una simetría con respecto al origen de coordenadas. Ejemplo: f(x)= X 3 f(2)=8 f(-2)=-8 Todas las funciones impares cumplen la ecuación: Función Par: Se llama función par a la que para todo x perteneciente al Domino de la función, se cumple que: Se produce una simetría con respecto al eje y. Ejemplo: f(x)= X 2 f(-2)= 4 f(2)= 4 Todas las funciones pares cumplen la ecuación:

19

20

21 Tipos de funciones Trigonométricas Por Partes o A Trozos Valor Absoluto Exponencial Logarítmica RacionalPolinómicas

22 Grado Impar Funciones polinómicas Cuadrática Grado Par Constante Lineal Cúbica Afín Idéntica

23 Generalidades de una función polinómica Se llama función polinómica a toda aquella que está definida por medio de polinomios. Según el grado del polinomio, las funciones polinómicas se pueden clasificar en: En el conjunto de las funciones polinómicas pueden definirse los siguientes tipos de operaciones: Suma de dos funciones f (x) y g (x): produce una nueva función (f + g) (x). Producto de una función f (x) por un número l: produce una nueva función (l × f) (x). Producto de dos funciones f (x) y g (x): resulta una nueva función (f × g) (x). Grado Nombre Expresión 0 Constante y= a 1 Lineal y= ax + b 2 Cuadrática y= ax 2 + bx + c 3 Cúbica y= ax 3 + bx 2 + cx + d

24 Función Constante Es una función polinómica de grado cero que no depende de ninguna variable. Se define por la ecuación: y= a Dominio= IR Rango= a Conjunto de Salida= IR Conjunto de Llegada= IR Punto de corte con x= no existe Punto de corte con y= a EJEMPLO

25 Análisis: y= 6 Dominio-Conjunto de salida= IR Conjunto de llegada= IR Rango= {6} Punto de corte con y= 6 Constante

26 Función Afín La función afín viene dada por la ecuación: y= mx+n Donde X y Y son las variables m es la pendiente n es la ordenada en el origen Dominio= IR Conjunto de Salida= IR Rango= IR Conjunto de Llegada= IR Punto de corte con y= n La m de una recta determina la inclinación de la misma, entonces: Si m<0 decreciente Si m>0 creciente Si m=0 constante m se calcula: EJEMPLO

27 Análisis: y= 6x +2 Dominio-Conjunto de salida= IR Rango-Conjunto de llegada= IR Punto de corte con y= 2 Punto de corte con x= -1/3 Pendiente= 6 Afín

28 Funciones de grado par Las funciones de grado par son las funciones en las que el mayor grado del polinomio es par. Se definen por la ecuación: EJEMPLO y= ax (2n) + bx (2n)-1 + cx (2n)-2 + … + dx + e

29 grado par y= 2X 4 + 4x 3 + 6x 2 – x + 8

30 Función Cuadrática Es una función polinómica que se define mediante un polinomio de segundo grado como: Es una parábola vertical, orientada hacia arriba o hacia abajo según sea el signo de a. El vértice de una parábola se halla mediante la ecuación: Dominio= IR Rango= (máximo o mínimo relativo, Conjunto de salida= IR Conjunto de llegada= IR Punto/s de corte con x: y= 0, se halla/n mediante la formula cuadrática: Punto de corte con y= c EJEMPLO

31 Análisis: y= x 2 + 3x – 4 Dominio-Conjunto de salida= IR Rango-Conjunto de llegada= IR Punto de corte con y= -4 Punto de corte con x= {-4, 1} Mínimo relativo= -3/2 Cuadrática

32 Funciones de grado impar Las funciones de grado impar son las funciones en las que el mayor grado del polinomio es impar. Se definen por la ecuación: EJEMPLO y= ax (2n-1) + bx (2n-1)-1 + cx (2n-1)-2 + … + dx + e

33 grado impar y= 3x 3 + 2x 2 – x + 4

34 Función Lineal Es la función que se define por la ecuación: y= mx Dominio= IR Rango= IR Conjunto de Salida= IR Conjunto de Llegada= IR Punto de corte con Y= 0 Punto de corte con X= 0 EJEMPLO

35 Análisis: y= 4x Dominio-Conjunto de salida= IR Rango-Conjunto de llegada= IR Punto de corte con y= 0 Punto de corte con x= 0 Pendiente= 4 Lineal

36 Función Idéntica Es la función que asigna como imagen a cada elemento del dominio el mismo elemento. Se define por la ecuación: y= x Su pendiente es m=1 Su gráfica es la recta bisectriz de los cuadrantes primero y tercero. EJEMPLO Dominio= IR Conjunto de Salida= IR Rango= IR Conjunto de Llegada= IR Punto de corte con X y Y= 0

37 Análisis: y= x Dominio-Conjunto de salida= IR Rango-Conjunto de llegada= IR Punto de corte con y= 0 Punto de corte con x= 0 Idéntica

38 Función Cúbica Función que tiene la forma, o puede ser llevada a la forma: con a 0, a,b,c,d IR EJEMPLO Dominio= IR Conjunto de Salida= IR Rango= IR Conjunto de Llegada= IR Punto de corte con y= d

39 Análisis: y= x 3 + 3x 2 + 4x + 6 Domino-Conjunto de salida= IR Rango-Conjunto de llegada= IR Punto de corte con y= 6 Punto de corte con x= -2.5 Cúbica

40 Referencias de consulta expresar/elementos.htmhttp://descartes.cnice.mec.es/materiales_didacticos/Funciones_formas_de_ expresar/elementos.htm


Descargar ppt "Funciones Presentado por: Tammy Roterman y Orli Glogower Presentado a: Patricia Cáceres Décimo Grado."

Presentaciones similares


Anuncios Google