La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

HemodinámicaBásica2013-2014. En todo sistema circulatorio se tiene: Un generador de pulsos de presión (bomba) Un generador de pulsos de presión (bomba)

Presentaciones similares


Presentación del tema: "HemodinámicaBásica2013-2014. En todo sistema circulatorio se tiene: Un generador de pulsos de presión (bomba) Un generador de pulsos de presión (bomba)"— Transcripción de la presentación:

1 HemodinámicaBásica

2 En todo sistema circulatorio se tiene: Un generador de pulsos de presión (bomba) Un generador de pulsos de presión (bomba) Un sistema para captación de oxígeno y expulsión de deshechos Un sistema para captación de oxígeno y expulsión de deshechos Un medio portador de oxígeno y otros nutrientes Un medio portador de oxígeno y otros nutrientes Un sistema de distribución Un sistema de distribución Un sistema de control de direccionalidad de distribución Un sistema de control de direccionalidad de distribución Mecanismos de la Circulación Sanguínea

3 Tarea principal: transporte de oxígeno y dióxido de carbono desde y hacia el sistema de intercambio con el medio. Posibilidades: Si se usa la bomba para generar presión y hacer llegar la sangre al sistema de intercambio, queda poca presión para distribuir la sangre oxigenada a los tejidos Si la bomba se usa para generar presión para hacer llegar sangre a los tejidos, queda poca presión para impulsar la sangre desoxigenada al sistema de intercambio.

4 El problema esquemáticamente queda planteado así:

5 SOLUCION. Bomba doble en paralelo: Bomba A Bomba B Para impulsar la sangre se debe ejercer una fuerza, debiendo impulsarla a lo largo del sistema circulatorio. Es decir, debe realizarse un trabajo de traslación. La manera más óptima de lograr un gran impulso en un solo paso en este caso es mediante contracción. Es decir, vía V se producirá un P por la compresión súbita del líquido y su natural salida por el punto de menor resistencia. Vo VfVf

6 Sistema circulatorio Sistema circulatorio– esquema general Capilares O2O2 CO 2 Válvulas direccionales

7 Sistema circulatorio – Características Flujo contínuo de sangre Diámetro decreciente + ramificación de los vasos Volumen sanguíneo ~ 5 – 10% del volumen corporal El corazón bombea la sangre al sistema arterial Elevada presión en las arterias reservorio de presión circula la sangre por los capilares.

8 El corazón permite elevar la presión del líquido en forma escalonada pero rápida. Sistema circulatorio – Características

9 Propiedades de líquidos y gases S n T T T Sobre el elemento de superficie S actúan tangencialmente las tensiones T, originando una resultante T.

10 La tensión actuante sobre la superficie será: Por otro lado:

11 Multiplicando escalarmente por i, j y k sucesivamente se obtiene que: Es decir, en equilibrio, en cada punto la presión es igual (Ley de Pascal)

12 Ecuaciones de Equilibrio y Movimiento P(x)P(x) P(x + dx) dxdx La fuerza elemental que actúa sobre el elemento de fluído es originada por la diferencia de presiones entre los extremos:

13 Pero: Entonces: De modo que podemos definir Fuerza por unidad de volumen

14 Por analogía definimos las restantes dos componentes: y Ecuación fundamental de la hidrostática Fuerza que actúa sobre el líquido

15 por parte del líquido Por III Ley de Newton, en equilibrio por parte del líquido actuará una fuerza: estando el sistema en equilibrio. Si no está en equilibrio su ecuación de movimiento será (expresada por unidad de voumen): ECUACION DE EULER Atención al signo

16 Si el líquido se halla en un campo gravitacional, en equilibrio: Por componentes: E integrando a lo largo del eje OZ: P(0) – Presión atmosférica a nivel del mar

17 De la ecuación de Mendeleev: tenemos: FORMULA BAROMETRICA Fuerza por unidad de volumen

18 Para líquidos en movimiento: S1S1 S2S2 v1v1 v2v2 Volumen 1 = Volumen 2 ECUACION DE CONTINUIDAD Se obtiene la ECUACION DE CONTINUIDAD.

19 h1h1 h2h2 h v1v1 v2v2 En términos de energía y trabajo: donde: E 2 - Energía mecánica total en 2 E 1 - Energía mecánica total en 1 A – trabajo de las fuerzas externas que trasladan la masa de líquido de 1 a 2 S1S1 S2S2

20 Recordemos que E = K + U, de modo que: y el trabajo total, realizado por las fuerzas originadas por la diferencia de presiones entre los extremos del tubo, será: Trabajo parcial en 1 – Trabajo parcial en 2

21 Igualando ambos miembros de la ecuación de energía: Pero: De modo que, finalmente, al dividir todos los términos por V: Ecuación de Bernoulli

22 Donde: Presión dinámica Presión manométrica de la columna de líquido Presión registrada en el extremo del tubo

23 Si h 1 h 2 : Y para un tubo curvo: S1S1 S2S2 v1v1 v2v2 F F Ley de conservación de momentum, consecuencia de la III Ley de Newton para un sistema cerrado. Ley de Conservación de Momentum

24 Entonces: Fuerza que actúa sobre el punto de inflexión del tubo.

25 VISCOSIDAD Tomemos dos placas de superficie S situadas a una distancia h una de la otra, y asumamos que la placa superior se mueve con velocidad v o y la inferior permanece en reposo. vovo h F -F S

26 vovo h F S La fuerza con la cual la placa inferior se opone al movimiento será (por módulo) proporcional a la velocidad relativa de desplazamiento v o, la superficie de las placas S, e inversamente propocional a la distancia h entre ambas. Esto fué establecido experimentalmente por Newton.

27 Es decir: Coeficiente de Rozamiento interno Y si ambas placas se mueven con velocidades colineales v 1 y v 2: Nótese que aparece una dependencia de la velocidad respecto a la distancia entre placas

28 Sea: Podemos reescribir la expresión anterior como Y en el límite, cuando y 0: La velocidad longitudinal varía respecto al eje perpendicular OY (altura)

29 Tomemos un tubo recto donde la corriente es estacionaria: P(x)P(x) P(x + dx) R dx S En este caso, tanto la superficie transversal como la lateral S serán funciones de r, y la velocidad también.

30 La fuerza elemental de rozamiento (viscosidad) actuante en función de r será: Superficie lateral S del cilindro Y entre las bases del cilindro actuará una fuerza elemental neta:

31 Como la corriente es estacionaria, quiere decir que F = 0, entonces: Además, en virtud de que la corriente analizada es estacionaria, y como consecuencia el comportamiento de la presión es lineal respecto a x. Aquí l es la longitud del tubo.

32 Llegamos a la ecuación diferencial: Integrando con los límites respectivos: 1. La velocidad máxima se alcanza en r = 0, en el eje longitudinal. 2. La distribución de velocidades respeto a r es parabólica: R -R X r

33 En cuanto al gasto de líquido, es decir, masa de líquido que atraviesa la superficie S en una unidad de tiempo: Ley de Poiselle Analice los límites del sistema circulatorio a la luz de la relación encontrada. Eje Borde externo

34 Número de Reynolds Una corriente puede ser laminar, si las líneas de velocidad de las partículas no se cruzan, o turbulentas en caso contrario. El tipo de carácter de la corriente está determinado por el valor del Número de Reynolds. Si R e 2000 o mayor, la corriente es turbulenta Diámetro del tubo

35 Sistema circulatorio – Efecto Fahraeus - Linqdvist En vasos delgados, la sangre se comporta como si fuera solamente plasma. Los eritrocitos se acumulan hacia el eje, por lo que la viscosidad se incrementa hacia el centro La gradiente de velocidad se invierte, moviéndose el líquido más rápido cerca de las paredes Al reducirse la viscosidad, la diferencia de presión necesaria para mantener el flujo es menor.

36 Sistema circulatorio – Efecto Fahraeus - Linqdvist En vasos más pequeños (5 - 7 m): Los eritrocitos copan el vaso deformándolo, el movimiento se produce como una oruga.

37 Comparación entre el comportamiento de un líquido ideal y la sangre Si bien los capilares son delgados, están agrupados en paralelo, lo que hace que su sección total sea mayor. Por Ley de Bernoulli : Velocidad (cm/s) Presión (mm Hg) Curva Teórica Curva real

38 En forma más detallada:

39

40 Capilaridad Tomemos una superficie a la cual trataremos de manetener estirada, evitando que tome su forma natural (esférica). Para ello aplicaremos una fuerza f tangente a la superficie y perpendicular a la línea de separación del medio (de longitud l): f l Coeficiente de Tensión superficial = ( T ) Tensión Superficial

41 El trabajo elemental a realizar para expandir (sin incremento de temperatura) el área en una longitud dx será: l dx f Pero dA se va completamente en incrementar la energía de la película en dE: Energía libre ( parte de la energía que puede transformarse en trabajo por vía isotérmica)

42 Ejemplo: Tomemos n gotas de mm de radio (r) y formemos una sola gota de R = 2mm. Pero Volumen 1 = Volumen 2 Trabajo de compresión, S 2 < S 1 Para el agua = 73 dinas/cm.

43 Presión debida a la curvatura de una superficie libre: En un campo gravitacional, toda superficie tiende a ser plana. En caso de encontrar un límite físico (p.e. las paredes de un vaso) al tender a ser plana puede ocurrir cualquiera de las siguientes situaciones: Superficie convexa La superficie presiona sobre las capas inferiores, sobrepresión positiva Superficie cóncava La sobrepresión es negativa, pues la capa superior tira de las capas inferiores

44 Veamos cuál es la magnitud de esta sobrepresión para una superficie esférica, para lo cual analizaremos un casquete de superficie S: dfdf df R R r dldl Para la figura: Pero es df la que ejerce la presión sobre el líquido

45 Entonces, para todo el contorno:La presión actuante será: La presión es inversamente proporcional al radio de la esfera. A menor radio, mayor presión actuante para un mismo

46 ¿En qué dirección cree que fluirá el aire? En este caso, guiarse por el radio es mala idea. El aire fluye de donde hay mayor presión a donde hay menor presión. ¿Por qué tenemos bronquiolos y alveolos pulmonares en lugar de tener solamente el pulmón como un sistema de fuelle?

47 Para una superficie cualquiera, la sobrepresión es: R1R1 R2R2 1 2 Para un clindro: ¿Qué pasa en los capilares?

48 Una vez analizado el líquido, veamos que ocurre cuando el líquido está en contacto con un cuerpo sólido (las paredes del recipiente). En este caso extstirán dos tipos de fuerzas: 1.Entre las moléculas del mismo líquido 2.Entre las moléculas del líquido y el sólido Posibilidades 1) La fuerza actuante entre las moléculas del líquido es mayor que la fuerza actuante entre ambos cuerpos 2) Las fuerzas intermoleculares dentro del líquido son menores que las fuerzas que actúan entre ambos cuerpos.

49 Caso 1: El líquido NO moja el sólido. La fuerza resultante está dirigida HACIA el líquido Esto ocurre cuando, el ángulo de contacto, es mayor o igual a /2. Si =, el líquido no moja en absoluto.

50 Caso 2: Las fuerzas de cohesión (entre las moléculas del líquido) son menores que las de adherencia (entre el líquido y sólido). En este caso el líquido moja al sólido. La fuerza resultante está dirigida hacia afuera del líquido. Cuando el águlo de contacto es menor a /2, el líquido moja al sólido.

51 h R r Calculemos a qué altura se elevará una columna de líquido que moja un tubo. Y la presión de la columna: En equilibrio:

52 ¿Y en este caso, ¿cuál será la altura? En este caso:

53 Dicho todo esto: ¿Cuánto trabajo realiza el corazón? Es decir, ¿cuál es su potencia? Bajo condiciones normales el corazón late aprox. 75 veces por minuto. Al hacerlo entrega 5 litros por minuto al sistema. La presión máxima en el corazón es cerca de 1/6 de Atm, desarrollando ente 1.3 y 2W de potencia mecánica. Ejemplo: Potencia = Presión x Flujo (Volumen por unidad de tiempo) Si tenemos 6 litros de sangre que circulan cada minuto, el flujo será 100cm 3 /s. La presión media es 133,000 dinas /cm². La potencia media entregada es 13,300,000 erg/s o 1.33 Watts. Si el día tiene 86,400 segundos, el trabajo realizado es aproximadamente 115,000 J, lo que equivale a la energía cinética de uan persona de 70 kg luego de caer desde 550 pisos!!!!!

54 Si embargo, la eficiencia del corazón es solamente 20%. ¿Por qué entonces ha sido la solución al problema? Energía Química Energía Mecánica Calor Factores que condicionan la eficiencia: 1.Tensión muscular durante la contracción 2.Fracción de tiempo durante el que se mantiene la tensión 3.Tasa de contracción del músculo mientras se mantiene la tensión

55 Contracción del corazón: La capacidad de una cámara o vaso de variar su volumen ante una variación de presión es cuantificada mediante el coeficiente de distensión : La curva correspondiente no es lineal. A menor variación de presión, mayor variación de volumen. A mayor variación de presión, menor variación de volumen.

56 CICLO CARDIACO – GRAFICOS PV El término isovolumétrico se refiere al volumen constante de sangre en el ventrículo

57 ¿Qué factores limitan este ciclo? La dureza (stiffness) del ventrículo. Es igual a siendo su gráfica la recíproca de C La Contractibilidad del ventrículo (inotropía). Este punto marca la presión máxima a la que se puede llegar.

58

59 Inotropía y la Familia de Curvas de Frank - Starling Menor inotropía Mayor inotropía

60 Siendo éste un diagrama PV, recordemos que: Por lo tanto, la gráfica expresa el trabajo total realizado por el ventrículo en un ciclo. Definición: El área encerrada bajo la curva cuantifica el trabajo realizado en un diagrama PV.

61 La variación de volumen es igual para ambos ventrículos, sin embargo el ventrículo izquierdo realiza más trabajo.


Descargar ppt "HemodinámicaBásica2013-2014. En todo sistema circulatorio se tiene: Un generador de pulsos de presión (bomba) Un generador de pulsos de presión (bomba)"

Presentaciones similares


Anuncios Google