La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Geometría Analítica LA ELIPSE 1. DEFINICIÓN 2. ELIPSES A NUESTRO ALREDEDOR 3. ELEMENTOS DE LA ELIPSE 4. EXCENTRECIDAD 5. ECUACIONES DE LA ELIPSE CANÓNICA.

Presentaciones similares


Presentación del tema: "Geometría Analítica LA ELIPSE 1. DEFINICIÓN 2. ELIPSES A NUESTRO ALREDEDOR 3. ELEMENTOS DE LA ELIPSE 4. EXCENTRECIDAD 5. ECUACIONES DE LA ELIPSE CANÓNICA."— Transcripción de la presentación:

1 Geometría Analítica LA ELIPSE 1. DEFINICIÓN 2. ELIPSES A NUESTRO ALREDEDOR 3. ELEMENTOS DE LA ELIPSE 4. EXCENTRECIDAD 5. ECUACIONES DE LA ELIPSE CANÓNICA ORDINARIA GENERAL 6. EJERCICIOS 1

2 Geometría Analítica La elipse es el lugar geométrico de todos los puntos P del plano cuya suma de distancias a dos puntos fijos, F 1 y F 2, llamados focos es una constante positiva. Es decir: Cuando un cono circular recto es seccionado por un plano oblicuo al eje y forma con este eje un ángulo mayor que el ángulo formado por la generatriz con el eje, los puntos pertenecientes igualmente al plano y al cono forman una elipse. 2 LA ELIPSE

3 Geometría Analítica 3 LA ELIPSE

4 Geometría Analítica 4 LA ELIPSE

5 Geometría Analítica 5 ELIPSE A NUESTRO ALREDEDOR

6 Geometría Analítica ELIPSE A NUESTRO ALREDEDOR

7 Geometría Analítica Veamos la propiedad fundamental de una elipse. Para ello, marca dos puntos en un plano, separados por ejemplo 4 centímetros. Los llamaremos los focos de la elipse. Escoge ahora un número mayor que 4, pongamos 10. La figura que resulta de marcar todos los puntos cuyas distancias a los focos suman 10 es una Elipse. PROPIEDAD DE LA ELIPSE

8 Geometría Analítica ELEMENTOS DE LA ELIPSE. F1F1. F2F2 B2B2 B1B1 2c 2a 2b V1V1. C. V2V2.

9 Geometría Analítica ELEMENTOS DE LA ELIPSE Focos. Son los puntos fijos F 1 y F 2. Eje focal. Es la recta que pasa por los focos. Eje secundario. Es la mediatriz del segmento F 1 F 2. Centro. Es el punto de intersección de los ejes. Radios vectores. Son los segmentos que van desde un punto de la elipse a los focos: PF 1 y PF 2. Distancia focal. Es el segmento F 1 F 2 de longitud 2c, c es el valor de la semi distancia focal. Vértices. Son los puntos de intersección de la elipse con los ejes: V 1, V 2, B 1, B 2. P F1F1 F2F2 B2B2 B1B1 V1V1 C V2V2

10 Geometría Analítica ELEMENTOS DE LA ELIPSE Eje mayor. Es el segmento V 1 V 2 de longitud 2a, a es el valor del semieje mayor. Eje menor. Es el segmento B 1 B 2 de longitud 2b, b es el valor del semieje menor. Ejes de simetría. Son las rectas que contienen al eje mayor o al eje menor. Centro de simetría. Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría. P F1F1 F2F2 B2B2 B1B1 V1V1 C V2V2

11 Geometría Analítica RELACIÓN ENTRE a, b y c Ubicaremos un punto P(x;y) en la intersección de la elipse con el eje Y para establecer las siguientes relaciones: b c a F1F1 F2F2 B2B2 B1B1 V1V1 C V2V2

12 Geometría Analítica EXCENTRICIDAD (e) La excentricidad de la elipse es igual al cociente entre su semi distancia focal y su semieje mayor. Es la razón entre las medidas de c y a, que indica el grado de achatamiento de la elipse. Así, en e = c/a Si e se aproxima a 0, la elipse tiende a adquirir la forma de una circunferencia. Si e se aproxima a 0, la elipse tiende a adquirir la forma de una circunferencia. Si e se aproxima a 1, la elipse tiende a ser cada vez más achatada. Si e se aproxima a 1, la elipse tiende a ser cada vez más achatada.

13 Geometría Analítica ECUACIONES DE LA ELIPSE ECUACIÓN CANÓNICA DE LA ELIPSE Cuando el eje focal coincide con el eje X Cuando el eje focal coincide con el eje Y F 1 (-c;0), F 2 (c;0), V 1 (-a,0), V 2 (a;0)F 1 (0;-c), F 2 (0;c), V 1 (0,-a), V 2 (0;a) Si en la ecuación de la elipse el denominador de x 2 es mayor que el denominador de y 2, entonces el eje focal coincide con el eje X. En caso contrario, el eje focal coincide con el eje Y.

14 Geometría Analítica ECUACIONES DE LA ELIPSE ECUACIÓN ORDINARIA DE LA ELIPSE Cuando el eje focal coincide con el eje X Cuando el eje focal coincide con el eje Y C(h;k), F(h±c;k), V(h±a;k)C(h;k), F(h;k±c), V(h;k±a)

15 Geometría Analítica ECUACIONES DE LA ELIPSE ECUACIÓN GENERAL DE LA ELIPSE Partiendo de la ecuación anterior y realizando un proceso similar al realizado para obtener la ecuación general de la circunferencia, se llega a la ecuación general de la elipse, donde los coeficientes A y B deben tener el mismo signo.

16 Geometría Analítica EJERCICIOS 01. Halla el centro y los focos de la elipse de ecuación: 02. Reduce la ecuación x 2 + 4y 2 – 6x + 16y + 21= 0 a la forma ordinaria de una elipse y determina las coordenadas del centro, vértices, focos, las longitudes de los ejes mayor y menor, la cuerda focal y la excentricidad. 03. Determina la ecuación de la elipse con centro en el origen, focos en los puntos (0; -3) y (0; 3) y eje mayor igual a 10 u. 04. Halla la ecuación de la elipse de excentricidad 2/3 y cuyos focos son los puntos (-2; 6) y (8; 6).

17 Geometría Analítica EJERCICIOS 05. Determina la ecuación de la elipse cuyo centro de gravedad está en el origen e coordenadas, el eje mayor a lo largo del eje X, el lado recto es igual a 6 y el valor de la excentricidad es 1/ Halla la ecuación de la elipse cuya longitud de la cuerda normal (lado recto) es 5 y sus vértices los puntos (-10;0) y (10; 0). 07. Las distancias de un punto P de una elipse a sus focos F 1 y F 2 son 6 y 8 cm. Calcula e, si m < F 1 P F 2 = 90º 08. En la elipse 4x 2 + 9y 2 = 36. El área del triángulo formado por un lado recto y los segmentos que unen los extremos con el centro de la elipse es: 09. Halla la ecuación de la elipse que tiene por centro el punto (2; 4), la distancia del centro a los focos es 3, su excentricidad 1/3 y la elipse es de eje vertical.


Descargar ppt "Geometría Analítica LA ELIPSE 1. DEFINICIÓN 2. ELIPSES A NUESTRO ALREDEDOR 3. ELEMENTOS DE LA ELIPSE 4. EXCENTRECIDAD 5. ECUACIONES DE LA ELIPSE CANÓNICA."

Presentaciones similares


Anuncios Google