La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La hipérbola Matemáticas Preuniversitarias

Presentaciones similares


Presentación del tema: "La hipérbola Matemáticas Preuniversitarias"— Transcripción de la presentación:

1 La hipérbola Matemáticas Preuniversitarias
Dra. Lourdes Palacios & M.I.B. Norma Castañeda

2 La hipérbola Una hipérbola es el conjunto de todos los puntos (x,y) en el plano, tales que la diferencia positiva entre las distancias de (x,y) a un par de puntos fijos distintos (los focos) es igual a una constante. Representamos a los focos como F(c,0) y F’(-c,0) y a la constante como 2a. Si (x,y) representa un punto de la hipérbola, que se muestra a continuación:

3

4 En el triángulo PCC’ de la figura anterior
Sea b2=c2-a2 Entonces

5 El eje x que contiene dos puntos de la hipérbola se llama eje transversal; el eje y, eje conjugado.
Los puntos (a,0) del eje transversal son los vértices, y el punto de intersección de los ejes (0,0), se llama centro.

6 Un punto (x,y) está en la hipérbola con vértices (a,0) y focos (c,0) si y solo si satisface la ecuación En la cual b2=c2-a2. Para toda hipérbola existen dos líneas a las que la curva se acerca cada vez más en sus extremos. A estas rectas se les denomina asíntotas. Debemos decir que las parábolas no tienen asíntotas, por consiguiente , una hipérbola no es, como podría suponerse al ver diagramas mal trazados, un par de parábolas.

7 La hipérbola representada por
Tiene asíntotas representadas por Vamos a suponer que y Para valores positivos de x (primer cuadrante). Para un valor dado de x veamos la diferencia d, entre las ordenadas de los puntos de la hipérbola y la recta. Multiplicamos el numerador y el denominador por y obtenemos

8 Ahora tenemos una constante en el numerador; pero, cuando los valores positivos de x son grandes, ambos términos del denominador son grandes y positivos. Mientras mayor es el valor de x, mayor es el valor del denominador, y , por consiguiente d es menor. Sí d tiende a cero cuando aumenta x, lo cual demuestra que la recta es una asíntota de la hipérbola. En el caso de los otros tres cuadrantes se pueden emplear razonamientos semejantes para demostrar que sucede los mismo en ellos.

9 Una forma cómoda de trazar las asíntotas es graficar (a,0) y (0, b) (aunque el segundo par de puntos no pertenece a la hipérbola) y trazar el rectángulo determinado por los puntos. Las diagonales de ese rectángulo son las asíntonas. En este caso hay dos lados rectos que contienen los focos y son perpendiculares al eje transversal.

10 Propiedades de la hipérbola.
La curva es simétrica a ambos ejes, es decir, la recta focal y la mediatriz del segmento focal son ejes de simetría. El punto de intersección de las dos rectas antes mencionadas es el centro de simetría de la curva, el cual se conoce como centro de la hipérbola. Intersección con los ejes coordenados.

11 Intersección con los ejes coordenados
a)      Con el eje x Sea y=0 entonces x2/a2=1  x= a A partir de este resultado se observa que en el eje focal existen dos puntos, V’(-a,0), V(a,0) que se denominan vértices y equidistan una distancia a del centro. b)     Con el eje y Sea x=0 entonces –y2/b2=1, por lo tanto, y= bi. La intersección con el eje y es imaginaria, por tanto, no hay intersección con el eje real y la hipérbola no corta su otro eje de simetría; y se le conoce como eje conjugado de la hipérbola.

12 Interpretación geométrica de a, b y c
Considere la figura que se muestra De la figura se observa que c2=a2+b2 a es la distancia media entre los dos vértices de la hipérbola, semieje transverso. se define como eje conjugado, por tanto b representa la mitad de este eje. c se considera como una hipotenusa de un triángulo cuyos catetos son a y b, se define como la semidistancia focal,

13 Excentricidad de la hipérbola
Se conoce como excentricidad de la hipérbola a la relación que existe entre la distancia focal y la distancia entre los vértices. donde e>1

14 Asíntotas de la hipérbola
Para una curva dada existe una recta que a medida que un punto de ella se aleja del origen, la distancia de ese punto a la recta decrece, es decir, tiende a cero; a dicha recta se le denomina asíntota.

15 En la figura se observa que las rectas diagonales del rectángulo MNRS tienen por ecuación
Por otro lado, de la ecuación Al despejar y de esta obtenemos factorizando En esta última ecuación, el valor de y para valores muy grandes de x se reduce a

16 sin embargo el radicando
Puesto que tiende a cero; siempre será menor a uno, por lo tanto también será la raíz cuadrada. De aquí que el valor de la curva siempre será menor que el valor de , que corresponde a la recta. De lo anterior se puede concluir que las diagonales y con ecuaciones , son las asíntotas de la curva.

17 Lado recto La longitud de la cuerda que pasa por el foco y es perpendicular a la recta focal se llama lado recto. De la figura observamos que para obtener la mitad del lado recto Al sustituir el valor de x por c en la ecuación despejando y

18 obteniendo pero sustituyendo Si ahora sustituimos el valor de y en la expresión, tenemos , pero el lado recto es el segmento y además por tanto, por lo cual concluimos que el valor del lado recto está dado por

19 Recta directriz de la hipérbola
Análogamente a la elipse las correspondientes rectas directrices están dadas por , o bien, es decir son simétricas

20 Ecuación ordinaria de la hipérbola con centro en el origen y eje focal paralelo al eje y
Focos en el eje y equidistantes al origen Ecuación de la hipérbola Ecuaciones de las asíntotas

21 Ecuación ordinaria de la hipérbola con centro fuera del origen y eje focal paralelo al eje x
Ecuación de la hipérbola Ecuaciones de las asíntotas

22 Coordenadas de los elementos que la construyen
Vértices Focos Eje trans verso Eje con jugado Distancia focal Lado recto Excentricidad

23 Ecuación ordinaria de la hipérbola con centro fuera del origen y eje focal paralelo al eje y
Ecuación de la hipérbola Ecuaciones de las asíntotas

24 Coordenadas de los elementos que la construyen
Vértices Focos Eje trans verso Eje con jugado Distancia focal Lado recto Excentricidad

25 Ecuación general de la hipérbola
La ecuación general de la hipérbola cuyos ejes de simetría son paralelos a los ejes coordenados está dada por , o bien, en ella es condición necesaria que el producto xy=0, y que los coeficientes A y C de las variables x y y sean de signos contrarios y diferentes de cero. A partir de su ecuación general, si se completan cuadrados tenemos lo siguiente. o bien,

26 En cualquiera de las dos ecuaciones, el valor del segundo miembro determina el lugar geométrico que representa. CASO 1 >0, el lugar geométrico que representa es la hipérbola. >0, o bien, CASO 2 ,se tendrá un punto en el plano. , o bien, CASO 3 <0, no representa el lugar geométrico llamado hipérbola. <0, o bien,

27 Ejemplo De la ecuación general 9x2-4y2+90x+189=0. Determina la posición de su eje transversal y las coordenadas del centro. Solución Factorizamos términos comunes 9(x2+10x) -4y2=-189 Completamos cuadrados Factorizamos y simplificamos 9(x+5) 2 -4y2=36 Multiplicamos por 1/36 Concluimos que su eje transversal es paralelo al eje y. Las coordenadas del centro C(-5,0) por tanto, se encuentra fuera del origen.


Descargar ppt "La hipérbola Matemáticas Preuniversitarias"

Presentaciones similares


Anuncios Google