La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Prof: José Fco Valverde Calderón Geodesia Física y Geofísica I semestre, 2014 Ing. José Francisco Valverde Calderón

Presentaciones similares


Presentación del tema: "Prof: José Fco Valverde Calderón Geodesia Física y Geofísica I semestre, 2014 Ing. José Francisco Valverde Calderón"— Transcripción de la presentación:

1 Prof: José Fco Valverde Calderón Geodesia Física y Geofísica I semestre, 2014 Ing. José Francisco Valverde Calderón Sitio web: Geodesia Física y Geofísica I semestre de 2014

2 Prof: José Fco Valverde Calderón Geodesia Física y Geofísica I semestre de 2014 Números Geopotenciales

3 Se define la altura dinámica como: Donde 0 es la gravedad normal para una latitud estándar Ventaja: dos puntos sobre la misma superficie equipotencial tiene la misma altura dinámica, mas no la misma altura ortométrica. No tiene un significado geométrico. No se requiere la formulación de hipótesis para su determinación. El valor de la corrección dinámica puede alcanzar hasta 20 m. Prof: José Fco Valverde Calderón Alturas dinámicas Corrección dinámicaAltura dinámica Geodesia Física y Geofísica I semestre de 2014

4 Prof: José Fco Valverde Calderón Alturas ortométricas La altura ortométrica es la distancia vertical entre el geoide y la superficie, medida a lo largo de la vertical o línea de plomada. Hay que conocer el valor de g en cada punto de la normal. Esto no es posible, se trabaja con un valor de gravedad promedio. Como no se puede medir sobre el geoide, se hacen nivelaciones Geodesia Física y Geofísica I semestre de 2014

5 Prof: José Fco Valverde Calderón Alturas ortométricas Geodesia Física y Geofísica I semestre de 2014

6 Prof: José Fco Valverde Calderón Sea C es el número geopotencial de un punto P y que H es la altura de P, se define la altura ortométrica como: Alturas ortométricas También se sabe que en un circuito de nivelación cerrado, la suma de los dn es diferente de cero Es necesario aplicar una corrección llamada corrección ortométrica para convertirla en una altura ortométrica. Esta se aplica a diferencias de altura. Geodesia Física y Geofísica I semestre de 2014

7 Prof: José Fco Valverde Calderón Alturas ortométricas La magnitud de las correcciones es mucho menor que el valor de las correcciones en las alturas dinámicas. La superficie de referencia es el geoide. Dos puntos estén en la misma superficie equipotencial, tendrán alturas distintas y su diferencia es proporcional a la variación de g m. g m no se puede medir de forma directa, es necesario la formulación de hipótesis sobre la distribución de masas a lo interno de la Tierra (densidad) y sobre el gradiente vertical de la gravedad ( g/ H) Geodesia Física y Geofísica I semestre de 2014

8 Por lo tanto, g m solo se puede determinar de forma aproximada, de forma que dependiendo de la hipótesis definida, la altura ortométrica de un punto no es única. Cada hipótesis para determinar g m conduce a diferentes sistemas de alturas ortométricas y por cada uno de estos sistemas, se requiere de una realización diferente del geoide. Algunas formas para calcular g m son: Método de Helmert. Primer, segundo y tercer método de Ramsayer. Método de Niethammer. Método de Mader. Método de Muller. Método de Vignal. Método de Baranov. Método de Ledersteger. Prof: José Fco Valverde Calderón Alturas ortométricas Geodesia Física y Geofísica I semestre de 2014

9 Prof: José Fco Valverde Calderón Supongase ahora que el campo de gravedad de la Tierra es igual al campo de gravedad real de la Tierra, es decir: Si con esa hipótesis se calcularan alturas ortométricas, se les llamara ALTURAS NORMALES y se denotan por H N o H* Se puede calcular H N como: Alturas Normales Geodesia Física y Geofísica I semestre de 2014

10 Se calcula la diferencia de alturas normales corregidas como: Prof: José Fco Valverde Calderón Como se observa, el valor de la gravedad media en este caso es la gravedad normal a lo largo de la línea de plomada teórica, entre el cuasigeoide y la superficie terrestre. Alturas Normales Geodesia Física y Geofísica I semestre de 2014

11 La magnitud de las corrección va desde los mm a los dm. A la distancia entre el elipsoide y el cuasigeoide se le llama altura anómala o. Tienen la ventaja de que no se requiere la formulación de hipótesis. Puntos sobre la misma superficie equipotencial y a la misma latitud tienen alturas normales idénticas. De lo contrario, la altura normal varia según el cambio de m con respecto a la latitud. m se puede determinar con exactitud. Las alturas normales son determinadas de forma univoca. Su precisión depende de: La calidad de las diferencias de nivel medidas. La calidad de la gravedad medida o interpolada La determinación de la latitud del punto La precisión de la fórmula de la gravedad teórica. Prof: José Fco Valverde Calderón Alturas Normales Geodesia Física y Geofísica I semestre de 2014

12 Las alturas dinámicas no tienen significado geométrico Estas no tienen una relación matemática directa con las alturas sobre el elipsoide Los valores de las correcciones dinámicas presentan los valores mas altos. Las alturas ortométricas son geométricamente interpretables y se relacionan con las alturas sobre el elipsoide a partir del geoide. Pero estas solo se pueden determinar de forma aproximada, dado el conocimiento inexacto de la gravedad a lo largo de la línea de plomada. Las diferentes formulaciones para el calculo de g m conducen a diferentes geoides, los cuales se conocen como cogeoides. Estos son muy cercanos al geoide, pero no corresponden con una superficie equipotencial. Es necesario que el geoide utilizado como superficie de referencia para las alturas ortométricas, sea calculado siguiendo hipótesis idénticas a las introducidas para determinar las mismas. Prof: José Fco Valverde Calderón Tomado de Sanchez, L. 2011: Notas de la III Escuela SIRGAS, Heredia, Costa Rica Resumen Geodesia Física y Geofísica I semestre de 2014

13 Cambios en la gravedad provocan cambios en las alturas ortométricas, por lo estas tienen poca validez en el tiempo, por lo que no se pueden asumir como sistema de referencia. Las alturas normales son estimables sin la introducción de hipótesis sobre la distribución de masas a lo interno de la Tierra. Las alturas normales se relacionan con las alturas sobre el elipsoide mediante la altura anómala. La superficie de referencia es el cuasigeoide, el cual no es una superficie equipotencial. Este inconveniente se presenta solo en las áreas continentales, por cuanto, en el océano y las áreas costeras, el geoide y el cuasigeoide son iguales. Desde este punto de vista, las alturas ortométricas no tienen ventajas sobre las normales, dado que la aproximación al geoide (el cogeoide), tampoco es una superficie equipotencial. Prof: José Fco Valverde Calderón Tomado de Sanchez, L. 2011: Notas de la III Escuela SIRGAS, Heredia, Costa Rica Resumen Geodesia Física y Geofísica I semestre de 2014

14 Característica Característica Tipo de Altura DinámicaOrtométricaNormal Unicidad: Las alturas de los puntos deben ser únicas, independientes de la trayectoria de la nivelación Superficie de referencia vertical: Esta debe ser independiente del calculo de las alturas y tener significado físico Interpretación geométrica: Las alturas deben ser interpretables geométricamente, es decir, deben representar la distancia geométrica entre dos puntos (el de calculo y el respectivo en la superficie de referencia Unidades de medida de distancia: para las aplicaciones prácticas, las alturas deben expresarse en unidades de medidas de longitudes (o distancias) Altura idéntica para puntos sobre la misma superficie equipotencial: Dos puntos deben tener el mismo valor de altura, si entre ellos el agua no fluye Prof: José Fco Valverde Calderón Tomado de Sanchez, L. 2011: Notas de la III Escuela SIRGAS, Heredia, Costa Rica Geodesia Física y Geofísica I semestre de 2014

15 Característica Tipo de Altura DinámicaOrtométricaNormal Formulación de hipótesis: Las alturas deben calcularse sin la introducción de hipótesis sobre la estructura interna de la Tierra. Relación con las alturas elipsoidales: Las alturas físicas tiene que ser compatible con el sistema de referencia geocéntrico convencional. Correcciones de magnitudes pequeñas: Para aplicaciones practicas las correcciones deben ser lo mas pequeñas posible, de forma que puedan ser omitidas eventualmente Prof: José Fco Valverde Calderón Tomado de Sanchez, L. 2011: Notas de la III Escuela SIRGAS, Heredia, Costa Rica Geodesia Física y Geofísica I semestre de 2014

16 América Por lo tanto, para América, SIRGAS recomienda la adopción de alturas normales. Se acordó hacer el ajuste de la redes de nivelación en termino de números geopotenciales; asi cada país selecciona el tipo de altura que mas le conviene. Prof: José Fco Valverde Calderón Geodesia Física y Geofísica I semestre de 2014


Descargar ppt "Prof: José Fco Valverde Calderón Geodesia Física y Geofísica I semestre, 2014 Ing. José Francisco Valverde Calderón"

Presentaciones similares


Anuncios Google