La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

EQUIPO 3 FRANCISCO GONZALEZ BARRERA PEDRO MARTIN ANCHONDO MELENDES EDUARDO ERNESTO ARMENDARIZ MALDONADO.

Presentaciones similares


Presentación del tema: "EQUIPO 3 FRANCISCO GONZALEZ BARRERA PEDRO MARTIN ANCHONDO MELENDES EDUARDO ERNESTO ARMENDARIZ MALDONADO."— Transcripción de la presentación:

1 EQUIPO 3 FRANCISCO GONZALEZ BARRERA PEDRO MARTIN ANCHONDO MELENDES EDUARDO ERNESTO ARMENDARIZ MALDONADO

2 La función de una central hidroeléctrica es utilizar la energía potencial del agua almacenada y convertirla, primero en energía mecánica y luego en eléctrica. Un sistema de captación de agua provoca un desnivel que origina una cierta energía potencial acumulada. El paso del agua por la turbina desarrolla en la misma un movimiento giratorio que acciona el alternador y produce la corriente eléctrica.

3

4

5

6 No requieren combustible, sino que usan una forma renovable de energía, constantemente repuesta por la naturaleza de manera gratuita. Es limpia, pues no contamina ni el aire ni el agua. A menudo puede combinarse con otros beneficios, como riego, protección contra las inundaciones, suministro de agua, caminos, navegación y aún ornamentación del terreno y turismo. Los costos de mantenimiento y explotación son bajos. Las obras de ingenieria necesarias para aprovechar la energía hidraúlica tienen una duración considerable. La turbina hidraúlica es una máquina sencilla, eficiente y segura, que puede ponerse en marcha y detenerse con rapidez y requiere poca vigilancia siendo sus costes de mantenimiento, por lo general, reducidos.

7 Los costos de capital por kilovatio instalado son con frecuencia muy altos. El emplazamiento, determinado por características naturales, puede estar lejos del centro o centros de consumo y exigir la construcción de un sistema de transmisión de electricidad, lo que significa un aumento de la inversión y en los costos de mantenimiento y pérdida de energía. La construcción lleva, por lo común, largo tiempo en comparación con la de las centrales termoeléctricas. La disponibilidad de energía puede fluctuar de estación en estación y de año en año.

8 Poco más del 22% de la energía electricidad producida en México proviene de las plantas hidroeléctricas. En México hay 64 Centrales Hidroeléctricas, de las cuales 20 son de gran importancia y 44 son centrales pequeñas. Suman un total de 181 unidades generadoras de este tipo. Las 20 centrales mas grandes se ubican de la siguiente manera: 5 en la Gerencia Regional de Producción Noroeste, 2 en la Gerencia Regional de Producción Norte, 5 en la Gerencia Regional de Producción Occidente, 2 en la Gerencia Regional de Producción Central y 6 en la Gerencia Regional de Producción Sureste.

9

10 Nombre de la centralNúmero de unidades Fecha de entrada en operación Capacidad efectiva instalada (MW) Ubicación Aguamilpa Solidaridad315-Sep Tepic, Nayarit Ambrosio Figueroa (La Venta) 531-May La Venta, Guerrero Ángel Albino Corzo (Peñitas) 415-Sep Ostuacán, Chiapas Bacurato216-Jul Sinaloa de Leyva, Sinaloa Bartolinas220-Nov-19401Tacámbaro, Michoacán Belisario Domínguez (Angostura)514-Jul Venustiano Carranza, Chiapas Bombaná420-Mar-19615Soyaló, Chiapas

11 Boquilla401-Ene San Francisco Conchos, Chihuahua Botello201-Ene Panindícuaro, Michoacán Camilo Arriaga (El Salto) 226-Jul El Naranjo, San Luis Potosí Carlos Ramírez Ulloa (El Caracol) 316-Dic Apaxtla, Guerrero Chilapan401-Sep Catemaco, Veracruz Cóbano225-Abr Gabriel Zamora, Michoacán Colimilla401-Ene Tonalá, Jalisco Colina101-Sep-19963San Francisco Conchos, Chihuahua

12 Colotlipa401-Ene-19108Quechultenango, Guerrero Cupatitzio214-Ago Uruapan, Michoacán Electroquímica101-Oct-19521Cd. Valles, San Luis Potosí Encanto219-Oct Tlapacoyan, Veracruz Falcón315-Nov Nueva Cd. Guerrero, Tamaulipas Fernando Hiriart Balderrama (Zimapán) 227-Sep Zimapán, Hidalgo Humaya227-Nov Badiraguato, Sinaloa Infiernillo628-Ene-19651,040La Unión, Guerrero

13 Itzícuaro201-Ene-19291Peribán los Reyes, Michoacán Ixtaczoquitlán110-Sep-20052Ixtaczoquitlán, Veracruz José Cecilio del Valle326-Abr Tapachula, Chiapas Jumatán417-Jul-19412Tepic, Nayarit La Amistad201-May Acuña, Coahuila Leonardo Rodríguez Alcaine (El Cajón)201-Mar Santa María del Oro, Nayarit Luis Donaldo Colosio (Huites) 215-Sep Choix, Sinaloa Luis M. Rojas (Intermedia) 101-Ene-19635Tonalá, Jalisco

14 Malpaso629-Ene-19691,080Tecpatán, Chiapas Manuel M. Diéguez (Santa Rosa) 202-Sep Amatitlán, Jalisco Manuel Moreno Torres (Chicoasén) 829-May-19812,400Chicoasén, Chiapas Mazatepec406-Jul Tlatlauquitepec, Puebla Micos201-May-19451Cd. Valles, San Luis Potosí Minas310-Mar Las Minas, Veracruz Mocúzari103-Mar Álamos, Sonora Oviáchic228-Ago Cajeme, Sonora Platanal221-Oct-19549Jacona, Michoacán

15 Plutarco Elías Calles (El Novillo) 312-Nov Soyopa, Sonora Portezuelos I401-Ene-19012Atlixco, Puebla Portezuelos II201-Ene-19081Atlixco, Puebla Puente Grande201-Ene Tonalá, Jalisco Raúl J. Marsal (Comedero) 213-Ago Cosalá, Sinaloa Salvador Alvarado (Sanalona) 208-May Culiacán, Sinaloa San Pedro Porúas201-Oct-19583Villa Madero, Michoacán Schpoiná307-May-19532Venustiano Carranza, Chiapas Tamazulapan212-Dic-19622Tamazulapan, Oaxaca

16 Temascal618-Jun San Miguel Soyaltepec, Oaxaca Texolo201-Nov-19512Teocelo, Veracruz Tirio301-Ene-19051Morelia, Michoacán Tuxpango401-Ene Ixtaczoquitlán, Veracruz Valentín Gómez Farías (Agua Prieta) 215-Sep Zapopan, Jalisco Villita401-Sep Lázaro Cárdenas, Michoacán Zumpimito401-Oct-19446Uruapan, Michoacán 27 de Septiembre (El Fuerte) 327-Ago El Fuerte, Sinaloa

17

18 El Durazno (Sistema Hidroeléctrico Miguel Alemán) 201-Oct-19550Valle de Bravo, México Huazuntlán101-Ago-19680Zoteapan, Veracruz Ixtapantongo (Sistema Hidroeléctrico Miguel Alemán) 329-Ago-19440Valle de Bravo, México Las Rosas101-Ene-19490Cadereyta, Querétaro Santa Bárbara (Sistema Hidroeléctrico Miguel Alemán) 319-Oct-19500Santo Tomás de los Plátanos, México Tepazolco216-Abr-19530Xochitlán, Puebla Tingambato (Sistema Hidroeléctrico Miguel Alemán) 324-Sep-19570Otzoloapan, México

19 TURBINA KAPLAN TURBINA PELTON TURBINA FRANCIS TURBINA DE BULBO

20

21 La palabra turbina, viene del latín turbo- inem, que significa rotación o giro de cualquier cosa.

22 Es una turbina hélice con los álabes del rodete orientables. Al poder variar la posición de los álabes, puede buscarse que su inclinación coincida en cualquier punto de funcionamiento con la dirección del flujo a la entrada del rodete, por lo que se adapta bien a cualquier carga.Se usa en CAIDAS MEDIAS y BAJAS. Su nombre se debe al ingeniero austríaco Víctor Kaplan ( ).

23

24 Las palas del rotor están dispuestas de manera que el agua circula entre ellas. La presión del agua hace que al salir en un determinado ángulo, la reacción a la fuerza del agua haga girar el rotor.

25 Un distribuidor suministra agua a presión desde los lados de la turbina. El agua al salir empuja las palas y su presión hace girar el rotor.

26 Las turbinas Kaplan son uno de los tipos mas eficientes de turbinas de agua de reacción de flujo axial, su rodete funciona de manera semejante a la hélice de un barco. Normalmente se „instalan con el eje en posición vertical, si bien se prestan para ser colocadas de forma horizontal o inclinada. El único „componente de las turbinas kaplan, que podría considerarse como distinto al de las turbinas Francis, es el rotor o rodete. Una de las características „fundamentales de las turbinas Kaplan constituye el hecho que las palas del rotor están situadas a una distancia más baja que la distancia del distribuidor, de modo que el flujo del agua incide sobre las palas en su parte posterior en dirección paralela al eje de la turbina.

27 Un chorro de agua convenientemente dirigido y regulado, incide sobre las cucharas del rodete que se encuentran uniformemente distribuidas en la periferia de la rueda. Debido a la forma de la cuchara, el agua se desvia sin choque, cediendo toda su energía cinética, para caer finalmente en la parte inferior y salir de la máquina.

28 La regulación se logra por medio de una aguja colocada dentro de la tubera. Este tipo de turbina se emplea para saltos grandes y presiones elevadas.

29

30 1.-Rodete 2.-Cuchar 3.- Aguja 4.- Tobera 5.- Conducto de entrada 6.- Mecanismo de regulación 7.-Cámara de salida

31 La turbina Francis fue desarrollada por James B. Francis. Las turbinas Francis son turbinas hidráulicas que se pueden diseñar para un amplio rango de saltos y caudales, siendo capaces de operar en rangos de desnivel que van de los dos metros hasta varios cientos de metros. Esto, junto con su alta eficiencia, ha hecho que este tipo de turbina sea el más ampliamente usado en el mundo, principalmente para la producción de energía eléctrica mediante centrales hidroeléctricas.

32 Caja espiral: Tiene como función distribuir uniformemente el fluido en la entrada del rodete de una turbina Caja espiral: Tiene como función distribuir uniformemente el fluido en la entrada del rodete de una turbina Predistribuidor: Tienen una función netamente estructural, para mantener la estructura de la caja espiral, tienen una forma hidrodinámica para minimizar las pérdidas hidráulicas. Predistribuidor: Tienen una función netamente estructural, para mantener la estructura de la caja espiral, tienen una forma hidrodinámica para minimizar las pérdidas hidráulicas.

33 Distribuidor Es el nombre con que se conocen los álabes directores de la turbomáquina, su función es regular el caudal que entra en la turbina, a la vez de direccionar al fluido para mejorar el rendimiento de la máquina. Este recibe el nombre de distribuidor Fink. Distribuidor Es el nombre con que se conocen los álabes directores de la turbomáquina, su función es regular el caudal que entra en la turbina, a la vez de direccionar al fluido para mejorar el rendimiento de la máquina. Este recibe el nombre de distribuidor Fink. Rotor: Es el corazón de la turbina, ya que aquí tiene lugar el intercambio de energía entre la máquina y el fluido, pueden tener diversas formas dependiendo del número de giros específico para el cual está diseñada la máquina. Rotor: Es el corazón de la turbina, ya que aquí tiene lugar el intercambio de energía entre la máquina y el fluido, pueden tener diversas formas dependiendo del número de giros específico para el cual está diseñada la máquina.

34 Tubo de aspiración: Es la salida de la turbina. Su función es darle continuidad al flujo y recuperar el salto perdido en las instalaciones que están por encima del nivel de agua a la salida. En general se construye en forma de difusor, para generar un efecto de aspiración, el cual recupera parte de la energía que no fuera entregada al rotor en su ausencia. Tubo de aspiración: Es la salida de la turbina. Su función es darle continuidad al flujo y recuperar el salto perdido en las instalaciones que están por encima del nivel de agua a la salida. En general se construye en forma de difusor, para generar un efecto de aspiración, el cual recupera parte de la energía que no fuera entregada al rotor en su ausencia.

35

36

37 -Su diseño hidrodinámico permite bajas perdidas hidráulicas, por lo cual se garantiza un alto rendimiento. -Su diseño es robusto, de tal modo se obtienen décadas de uso bajo un costo de mantenimiento menor con respecto a otras turbinas. -Junto a sus pequeñas dimensiones, con lo cual la turbina puede ser instalada en espacios con limitaciones física también permiten altas velocidades de giro. -Junto a la tecnología y a nuevos materiales, las nuevas turbinas requieren cada vez menos mantenimiento.

38 -No es recomendado para altura mayores de 800 m, por las presiones existentes en los sellos de la turbina. -Hay que controlar el comportamiento de la cavitación. -No es la mejor opción para utilizar frente a grandes variaciones de caudal, por lo que se debe tratar de mantener un flujo de caudal constante previsto, antes de la instalación

39 Si además de tener las palas orientables, las turbinas funcionan en los dos sentidos de rotación (turbinas reversibles) se les denomina turbinas Bulbo.

40 HISTORIA El nacimiento oficial de estos grupos Bulbo, tiene lugar el 27 de diciembre de 1933, adquiriendo el derecho de los mismos Arno Fisher, que en 1936 inaugura los dos primeros grupos de Rostin,; la potencia de esta primera central era de 168 kW.

41

42 Básicamente es una unidad de generación consiste en una turbina y un generador de Kaplan rodeado por una cápsula. La cápsula es a su vez inmersa en el flujo de agua, esto conduce a un sistema de cierre que requiere una mayor precisión, lo que significa menos espacio para el acceso de mantenimiento.

43 El generador esta encerrado en un recinto metálico estanco que normalmente precede al rotor de turbina, la forma del conjunto es como una pera o bulbo. Para llegar hasta el alternador, como así también a las conducciones y servicios se dispone de una chimenea que comunica con el exterior.

44

45

46

47 Se caracteriza por tener el conjunto turbina-generador instalado en el eje horizontal dentro de una cápsula llamada bulbo, que por lo general opera sumergido.

48 NúmeroComponenteNúmeroComponente 1Cápsula o ampolla07-09Rodamientos 2Tubo de acceso del generador10Distribuidor 3Cámara de aducción11Palas del rotor 4Sistema de aceite del rotor12Cono o Warhead 5Generador síncrono13Cubo Estructuras de soporte y Pre-distribuidor Tubo de acceso a la turbina 14Tubo de descarga PRINCIPALES COMPONENTES DE LA TURBINA BULBO

49 Es un efecto hidrodinámico que se produce cuando un fluido pasa a gran velocidad por una arista afilada, produciendo una descompresión del fluido, provocando el desgaste de la estructura.

50

51 Turbina Pelton. Mantener la presión inicial lo mas alto posible Reducir las curvaturas de la línea de corriente. Reducir la distancia entre el flujo de entrada y el flujo de expulsión. Turbina Francis. Material con mayor resistencia. Dar un acabado de pulido. Implementación de hules. Implementar el método catódico. Modificar el diseño para minimizar las diferencias de presión.

52 Turbina de Bulbo. Modificar el diseño para minimizar la diferencia de presión. Recubrir con hule o plástico que absorban las energías de choque. Turbina de Hélice. Cambiar el tipo de material de las hélices por acero inoxidable. Turbina kaplan. Aumentar la resistencia del material. realizar un diseño apropiado.

53 APLAUSOS


Descargar ppt "EQUIPO 3 FRANCISCO GONZALEZ BARRERA PEDRO MARTIN ANCHONDO MELENDES EDUARDO ERNESTO ARMENDARIZ MALDONADO."

Presentaciones similares


Anuncios Google