La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Maestría en Economía Taller: Introducción al lenguaje R Sesión 5: Objetos en R, matrices Profesor: Noé Becerra Rodríguez 5 de septiembre 2013.

Presentaciones similares


Presentación del tema: "Maestría en Economía Taller: Introducción al lenguaje R Sesión 5: Objetos en R, matrices Profesor: Noé Becerra Rodríguez 5 de septiembre 2013."— Transcripción de la presentación:

1 Maestría en Economía Taller: Introducción al lenguaje R Sesión 5: Objetos en R, matrices Profesor: Noé Becerra Rodríguez 5 de septiembre 2013

2 Sesión 5 Contenido Generación de matrices Operaciones con matrices Manipulación de matrices 2

3 Matrices Una matriz es un arreglo de números, existen diversas maneras de construir una matriz además de rbind( ) y cbind( ). Por default las matrices en R se llenan por columna > matrix (c (1, 2, 3, 4, 5, 6, 7, 8, 9), nrow = 3) > matrix (1:8, ncol = 2) > matrix (c (1, 2, 3, 4, 5, 6, 7, 8, 9), ncol = 9) > vector10 = c (1:9) > matrix (vector10, nrow = 3) 3

4 Operaciones con Matrices > vector5 = c (1,2,4,5,6,7,8,9,10) > matriz1 = matrix (vector5, nrow=3) > matriz2 = matrix (11:19, nrow=3) Sumar un escalar a una matriz > matriz1 > matriz1 + 2 Producto de un escalar por una matriz > matriz2 > matriz2 * 3 Suma de dos matrices (deben ser conformes con la suma!) > matriz1 > matriz2 > matriz1 + matriz2 4

5 Operaciones con matrices Ejercicio. Dadas las siguientes matrices: A = 6 9, B = 3 -2 y C = 6 1 hallar: a)A + B b) C - A c)3*B d) 4*B + 2*C 5

6 Operaciones con Matrices La multiplicación de matrices de álgebra lineal es: > matriz1 %*% matriz2 PERO NO > matriz1 * matriz2 Que da el producto elemento a elemento! Necesario que las matrices sean conformes con el producto para la multiplicación de álgebra lineal!! El determinante de una matriz > det (matriz1) La transpuesta de una matriz > t (matriz1) La inversa de una matriz > solve (matriz1) 6

7 Operaciones con Matrices El comando solve() permite obtener la inversa de una matriz dada u obtener el vector solución de un sistema de ecuaciones lineales si los argumentos son la matriz de coeficientes y el vector de las ys solve(A,b) # donde A es la matriz de coeficientes y b es el vector de las ys Ejercicio. Hallar el vector solución de los siguientes sistemas de ecuaciones lineales 2x + 3y + z = 12 x + y - z = 4 3x - y + 2z= 6 x + 2y – z = 32 2x + y + z = 16 -4x – 2y + z = 12 7

8 Operaciones con Matrices > diag (x) # x es un vector > diag (A) # A es una matriz > diag (k) # k es una constante y es numero de columnas y renglones > y=eigen (A) # calcula los valores y vectores propios de la matriz A > y$val # da los valores propios de A > y$vec # obtiene los vectores propios de A 8

9 Ejercicios Hallar los valores y vectores propios de la siguientes matrices

10 Sesión 2 Contenido Instalación de RStudio Tipos de objetos en R Operaciones con vectores y matrices Manipulación de matrices y vectores 10

11 Manipulación de matrices R permite manipular la matrices de manera sencilla con el indexador [ ] > matriz1 [,1] [,2] [,3] [1,] [2,] [3,] Los números entre corchetes indican la columna y el renglón y sirven para modificar la matrices o extraer elementos de ella > matriz1[1, 3] # muestra el elemento del renglón 1 columna 3 > matriz1[ 2, ] # muestra el renglón 2 > matriz1[,-2] # elimina la columna 2 > matriz1[1, 1] = 15 # asigna el valor 15 en el renglón 1 columna1 > matriz1 11

12 Manipulación de matrices > matriz1[,2:3 ] = 2 # asigna 2 a las columnas 2 y 3 > matriz1 > matriz1[,2:3 ] = 4:9 # asigna la secuencia 1 a 9 en las columnas 2 y 3 > matriz1 > matriz1[matriz1 > 5] # muestra los valores mayores que 5 en la matriz > matriz1 > 5 # operador lógico que muestra qué valores son mayores a 5 > matriz1[matriz1 >= 8] = 3 # asigna 3 a los valores que son mayores a 8 12

13 Tarea 1.Calcular la matriz inversa y los valores y vectores propios de las siguientes matrices

14 Tarea Resolver los siguiente sistemas de ecuaciones lineales. x + 2y + 3z = 24 4x + 5y + 6z = 32 7x + 8y + 9z = 41 x + 4y + 7z = 24 2x + 5y + 8z = 32 3x + 6y - 9z = 41 14

15 ¿preguntas? 15


Descargar ppt "Maestría en Economía Taller: Introducción al lenguaje R Sesión 5: Objetos en R, matrices Profesor: Noé Becerra Rodríguez 5 de septiembre 2013."

Presentaciones similares


Anuncios Google