La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Gravitación 4ª ESO Chema Martín, 2013. INDICE Modelos del sistema solar. Leyes de kepler Estudio del Movimiento circular Ley de la Gravitación universal.

Presentaciones similares


Presentación del tema: "Gravitación 4ª ESO Chema Martín, 2013. INDICE Modelos del sistema solar. Leyes de kepler Estudio del Movimiento circular Ley de la Gravitación universal."— Transcripción de la presentación:

1 Gravitación 4ª ESO Chema Martín, 2013

2 INDICE Modelos del sistema solar. Leyes de kepler Estudio del Movimiento circular Ley de la Gravitación universal de Newton Uso de la ley de gravitación: – Explicación de las leyes de Kepler. Satélites – Campo gravitatorio. Valor de g.

3 Teorias sobre el sistema solar Modelo Geocéntrico: – Propuesto en la antigüedad por los griegos y sistematizado por Ptolomeo, astrónomo griego que vivió en Alejandría en el s. II – Asume que la Tierra está inmovil en el centro del sistema solar y todos los planetas y el sol giran alrededor de ella. – Ptolomeo lo perfecciona con la idea del epiciclo y la deferente, para explicar la retrogradación de algunos planetas como marte.

4 Modelo geocéntrico de Ptolomeo

5 Resultado de los dos movimientos: la epicicloide

6 Teorias sobre el sistema solar Modelo Heliocéntrico: – Se debe a Copérnico ( ). Su libro, De revolutionibus orbium coelestium (Sobre las revoluciones de las esferas celestes), publicada póstumamente en 1543, que suele estar considerado como el punto inicial o fundador de la astronomía moderna.De revolutionibus orbium coelestium Las ideas principales de su teoría eran: – Los movimientos celestes son uniformes, eternos, y circulares o compuestos de diversos ciclos (epiciclos). – El centro del universo se encuentra cerca del Sol.Sol – Orbitando alrededor del Sol, en orden, se encuentran Mercurio, Venus, la Tierra y la Luna, Marte, Júpiter, Saturno. (Aún no se conocían Urano yNeptuno.)SolMercurioVenusTierraLunaMarteJúpiterSaturnoUranoNeptuno

7 Otros cientificos que profundizan en el modelo Heliocétrico son: – Tycho Brahe ( ) fue un astrónomo danés, considerado el más grande observador del cielo en el período anterior a la invención del telescopio. Tras la muerte de Brahe las medidas sobre la posición de los planetas pasaron a posesión de Kepler.astrónomodanéstelescopio – Galileo: Inventor del telescopio y gran astrónomo, confirmo lo propuesto por Copérnico. Galileo: – Kepler: Elaboró, con los datos de Brahe, las famosas 3 leyes que rigen el movimiento planetario.

8 Leyes de Kepler Johannes Kepler ( ), figura clave en la revolución científica, astrónomo y matemático alemán; fundamentalmente conocido por sus leyes sobre el movimiento de los planetas en su órbita alrededor del Sol. Fue colaborador de Tycho Brahe, a quien sustituyó como matemático imperial de Rodolfo II revolución científicaalemánleyes sobre el movimiento de los planetas en su órbita alrededor del SolTycho BraheRodolfo II Durante su estancia con Tycho le fue imposible acceder a los datos de los movimientos aparentes de los planetas ya que Tycho se negaba a dar esa información. Ya en el lecho de muerte de Tycho y después a través de su familia, Kepler accedió a los datos de las órbitas de los planetas que durante años se habían ido recolectando. Gracias a esos datos, los más precisos y abundantes de la época, Kepler pudo ir deduciendo las órbitas reales planetarias.

9 Afortunadamente, Tycho se centró en Marte, con una elíptica muy acusada, de otra manera le hubiera sido imposible a Kepler darse cuenta de que las órbitas de los planetas eran elípticas. Inicialmente Kepler intentó el círculo, por ser la más perfecta de las trayectorias, pero los datos observados impedían un correcto ajuste, lo que entristeció a Kepler ya que no podía saltarse un pertinaz error de ocho minutos de arco. Kepler comprendió que debía abandonar el círculo, lo que implicaba abandonar la idea de un "mundo perfecto". De profundas creencias religiosas, le costó llegar a la conclusión de que la tierra era un planeta imperfecto, asolado por las guerras, en esa misma misiva incluyó la cita clave: "Si los planetas son lugares imperfectos, ¿por qué no deben de serlo las órbitas de las mismas?". Finalmente utilizó la fórmula de la elipse, una rara figura descrita por Apolonio de Pérgamo una de las obras salvadas de la destrucción de la biblioteca de Alejandría. Descubrió que encajaba perfectamente en las mediciones de Tycho.MarteApolonio de Pérgamobiblioteca de Alejandría

10 1ª: Ley de las órbitas Elipse: Lugar geométrico de los puntos del plano cuya suma de distancias a 2 puntos fijos denominados focos (F y F) es constante. Es como un circulo con 2 centros. Se puede trazar con una cuerda sujeta a 2 puntos, los focos, y un boligrafo que desliza por el interior de la cuerda.

11 La primera ley de kepler afirma que: Los planetas giran en órbitas elípticas alrededor del sol, estando éste situado en uno de los focos de la elipse.

12 2ª: Ley de las áreas El radiovector que une el sol con un planeta recorre áreas iguales en tiempos iguales. Se puede formular también diciendo que la velocidad areolar (m 2 /s) de cada planeta es constante. En la animación de la derecha se representa el área que recorre la línea que une el Sol con la Tierra cada 2 meses. Todas las áreas son iguales.

13 Una consecuencia de la 2ª ley Como el movimiento no es circular, los planetas no están siempre a la misma distancia del sol. De todas las posiciones hay 2 especialmente interesantes: – Afelio: cuando el planeta está más alejado del sol, en el caso de la tierra en el solsticio de verano, cerca del día de San Juan. – Perihelio: cuando el planetas está más cerca del sol, en el caso de la tierra en el solsticio de invierno, cerca del día de Navidad (curioso que haga tanto frio estando cerca del Sol y tanto calor cuando estamos lejos, ¿eh?).

14 Una consecuencia de la 2ª ley Como el área barrida debe ser el mismo, el planeta debe ir mas deprisa en el perihelio que en el afelio. No sólo vamos a toda pastilla sino que también a tirones.

15 3ª: Ley de los períodos Kepler no sólo fue exacto en la 2º ley, sino que llegó a predecir el tiempo que tarda cada planeta en dar la vuelta alrededor del sol, su período, T (que en el caso de la Tierra es 1 año). Parece evidente que cuanto mayor sea el radio mas larga será la órbita y mayor será el período, pero la relación no es tan sencilla como la proporcionalidad directa entre T y r El radio de comparación es el denominado radio medio, r, que se calcula haciendo la media entre la distancia del planeta al sol en el afelio y en el perihelio.

16 3ª: Ley de los períodos El cuadrado de los períodos de rotación de los planetas alrededor del sol son proporcionales a los cubos de sus respectivos radios medios. Es decir, que la relación es: T 2 =kr 3 Se cumple que si los planetas lejanos tardan mas en girar alrededor del Sol, pero la relación no es la simple proporcionalidad.

17 Gráfica de la 3ª Ley Distancias en AU=Unidades astronómicas=distancia Tierra-Sol (observar donde está la tierra en la gráfica).Períodos en años. Observar que se representa T 2 frente a r 3 T 2 =Kr 3

18 Movimiento circular Aunque acabamos de ver que las órbitas de los planetas son elípticas, su excentricidad, su achatamiento, es muy pequeño y podemos suponer, a efectos de cálculo práctico, que sus órbitas serán circulares. Vamos a estudiar brevemente el movimiento circular, para aplicarlo, junto con la ley de gravitación universal de Newton, al estudio de las órbitas de planetas y satélites.

19 El movimiento circular Se denomina movimiento circular a aquel cuya trayectoria es una circunferencia. Recordar que la circunferencia es el lugar geométrico de los puntos del plano tales que equidistan de otro llamado centro. Esa distancia igual para todos es el radio r Para describir el movimiento circular es necesario conocer las magnitudes que lo definen y lo primero será conocer cómo medir los ángulos En física la medida básica de ángulos se suele hace en una unidad denominada radian (rad) que habrás visto en matemáticas. Es una unidad de medida de ángulos, como el grado. Cuando usamos los grados dividimos el ángulo central de la circunferencia en 360 partes y cada una es un grado. El radián (abreviatura rad)es el valor del ángulo central que comprende un arco cuya longitud es igual que el radio con el que se traza el ángulo.

20 Relaciones entre medidas

21 Relaciones entre medidas

22 Velocidad angular (ω)

23 Relación ω-v

24 Movimiento circular uniforme Es aquel que tiene una trayectoria circular y cuya velocidad es constante. Por ejemplo, una noria, un tiovivo, … Se abrevia MCU. Como v=cte ω=v·r=cte; Δϕ=ωΔt ϕ=ϕ 0 +ω(t-t 0 ) Ecuación igual que la del MRU, s=s 0 +v(t-t 0 ), cambiando las magnitudes lineales s y vpor sus correspondientes angulares ϕ y ω;

25 Una gran diferencia entre MRU y MCU Además de la trayectoria y del cambio en las magnitudes lineales por ángulares hay otra diferencia muy sútil pero muy importante entre el MRU y el MCU. En el MRU no hay aceleración, ya que el vector velocidad no cambia ni de módulo, ni de dirección. Si embargo, en el MCU, la velocidad es constante en módulo (siempre va a los mismos metros por segundo) pero como v es tangente a la trayectoria cambia continuamente de dirección, por lo que tiene un tipo de aceleración conocida como aceleración normal o centrípeta.

26 Cuando el movimiento es circular uniforme (siempre con módulo, 5 m/s, por ejemplo) la velocidad, tangente a la trayectoria, debe cambiar de dirección continuamente y por tanto debe tener una aceleración. Esa aceleración queda justificada con la 2ª ley de Newton. Para que un objeto gire es necesario que hagamos una fuerza hacia el centro, como se ve en la figura de debajo. Si la fuerza va hacia el centro, la aceleración también. Por eso se llama centrípeta o normal.

27 La aceleración normal

28 Período y Frecuencia del MCU

29 Ley de gravitación de Newton Propuesta por Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687.Philosophiae Naturalis Principia Mathematica La propone como intento de explicación del movimiento planetario (las leyes de Kepler) y el movimiento de los cuerpo en caída libre. Enunciado: La fuerza con que se atraen dos cuerpos es directamente proporcional al producto de las masas e inversamente proporcional al cuadrado de la distancia que las separa

30 Ley de gravitación de Newton

31 Justificación de la 3ª Ley de kepler

32 demostración

33 Campo gravitatorio. g

34 El peso

35 Variación de g con la altura

36 FIN

37 ELIMINADAS

38 4º ESO | UNIDAD 01 | FÍSICA Y QUÍMICA aceleración En el tema 1 definíamos aceleración como el cambio en la velocidad. También decíamos que la velocidad era un vector tangente a la trayectoria. En el estudio de un movimiento en general, el vector velocidad puede cambiar con el tiempo en sus 2 magnitudes: – Puede cambiar su módulo, es decir, unas veces ir más deprisa y otras más despacio. Esto es la única que hemos tenido en cuenta en el movimiento rectilíneo. La aceleración que mide cambios de módulo se llama tangencial – Puede cambiar de dirección. En el movimiento rectilíneo no ocurre nunca, pero en el circular ocurrirá siempre. V cambiará siempre de dirección. A la aceleración que mide este cambio se la denomina normal o centrípeta

39 Movimiento rectilíneo uniformemente acelerado MRUA. Se producen cambios en el modulo. El coche tiene aceleración tangencial. Es la aceleración que hemos estudiado hasta ahora,

40 En un movimiento real, con rectas y curvas, hay de los dos tipos de aceleración, unas veces separados y otras juntas. En las rectas aceleración tangencial y en las curvas de los 2 tipos, pues habrá una aceleración normal que les meta en la curva (en este esquema se mide en gs) y tangencial (frenan a la entrada de la curva y aceleran para salir)

41 Telemetría real de una prueba de F1


Descargar ppt "Gravitación 4ª ESO Chema Martín, 2013. INDICE Modelos del sistema solar. Leyes de kepler Estudio del Movimiento circular Ley de la Gravitación universal."

Presentaciones similares


Anuncios Google