La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La Econometria como Herramienta en los Procesos Judiciales Walter Sosa Escudero Walter Sosa-Escudero, PhD Profesor Asociado y Director, Departamento de.

Presentaciones similares


Presentación del tema: "La Econometria como Herramienta en los Procesos Judiciales Walter Sosa Escudero Walter Sosa-Escudero, PhD Profesor Asociado y Director, Departamento de."— Transcripción de la presentación:

1 La Econometria como Herramienta en los Procesos Judiciales Walter Sosa Escudero Walter Sosa-Escudero, PhD Profesor Asociado y Director, Departamento de Economia Universidad de San Andres

2 Preludio: Matematica y Derecho Only two things in life we are told are certain, death and taxes De todo lo que nos dicen, solo dos cosas son ciertas: la muerte y los impuestos Colin Aitken, Profesor de Estadistica Forense y Director del Grupo de Trabajo sobre Estadistica y Derecho, Royal Statistical Society

3

4

5 Esta charla Explora la posibilidad de usar metodos y razonamientos estadisticos en cuestiones legales. Explora la posibilidad de usar metodos y razonamientos estadisticos en cuestiones legales. Ilustra problemas habituales en las argumentaciones estadísticas. Ilustra problemas habituales en las argumentaciones estadísticas. Motiva el uso de la estadistica y la econometría como formas alternativas de validacion o refutacion. Motiva el uso de la estadistica y la econometría como formas alternativas de validacion o refutacion.

6 Hoja de ruta 1. Tres ejemplos, dos ficticios, uno real. 2. El ámbito de la estadística y el de la econometría. 3. Los objetos centrales de la estadística: estimar, decidir. Lidiar con la incertidumbre. 4. Falacias, artimañas y cómo mentir con estadísticas. 5. Guia de lecturas

7 Contraindicaciones, advertencias, letra chica No soy un experto en derecho. No soy un experto en derecho. Menos aún en derecho argentino. Menos aún en derecho argentino. Matemática no es números (contabilidad es números). Matemática no es números (contabilidad es números). Estadistica tampoco. Estadistica tampoco. Lo importante es la forma de razonamiento. Lo importante es la forma de razonamiento. No es una clase de estadística. No usaré ninguna formula. No es una clase de estadística. No usaré ninguna formula.

8 Tres Ejemplos

9 Discriminacion por genero En una empresa las mujeres ganan más que los varones. En una empresa las mujeres ganan más que los varones. ¿Es posible conjeturar que los hombres son discriminados? ¿Es posible conjeturar que los hombres son discriminados? ¿Porqué no funciona comparar salarios de hombres y mujeres? ¿Porqué no funciona comparar salarios de hombres y mujeres?

10 Fumar es beneficioso para la salud Estudio realizado a 100 personas elegidas al azar. Estudio realizado a 100 personas elegidas al azar. Encuentra una relacion negativa entre el riesgo de muerte y la cantidad de cigarrillos fumados por semana: mas cigarrillos, ¿menos riesgo de muerte? ¿Fumar es beneficioso para la salud? Encuentra una relacion negativa entre el riesgo de muerte y la cantidad de cigarrillos fumados por semana: mas cigarrillos, ¿menos riesgo de muerte? ¿Fumar es beneficioso para la salud?

11 Paul F. Engler and Cactus Feeders, Inc., v. Oprah Winfrey et al. It has just stopped me cold from eating another burger Oprah Winfrey, 16 de abril de 1996

12 El comentario de Oprah se hizo en el contexto del problema del mal de la vaca loca El comentario de Oprah se hizo en el contexto del problema del mal de la vaca loca La empresa Cattle Feeders (alimento para ganado) demanda a Oprah por La empresa Cattle Feeders (alimento para ganado) demanda a Oprah por $4,893,843. Sostienen que sus dichos provocaron inusuales caidas en el precio del alimento para ganado.

13 Precio de alimento, Cactus Feeders

14 Precios del mercado de futuros en Chicago

15 Preguntas ¿Qué significa inusuales caidas? ¿Qué significa inusuales caidas? ¿Qué caidas son usuales? ¿Qué caidas son usuales? ¿Qué significa usuales? ¿Qué significa usuales? ¿Cuál es el rol de cualquier otro factor (no causado por Oprah) en la determinacion de precios? ¿Cuál es el rol de cualquier otro factor (no causado por Oprah) en la determinacion de precios?

16 Estadística y Econometría

17 Estadistica Cox-Hinkley (1974): los metodos estadisticos intentan asistir en la interpretacion de datos sujetos a una aleatoriedad considerable. Cox-Hinkley (1974): los metodos estadisticos intentan asistir en la interpretacion de datos sujetos a una aleatoriedad considerable. Ejemplo 1: edad de participantes de esta clase, en base a un subconjunto. Ejemplo 1: edad de participantes de esta clase, en base a un subconjunto. Ejemplo 2: billetes y monedas que una persona lleva en su billetera, en base a toda la clase. Ejemplo 2: billetes y monedas que una persona lleva en su billetera, en base a toda la clase.

18 La naturaleza de lo aleatorio Ejemplo 1: el proceso que elige personas que integran la muestra. Ejemplo 1: el proceso que elige personas que integran la muestra. Ejemplo 2: el efectivo en sí mismo. Ejemplo 2: el efectivo en sí mismo. Lo aleatorio: como representación de lo desconocido. Mas alla de que hayan fenomenos fortuitos o no.

19 Estadistica descriptiva e inferencial Descriptiva: resaltar características de una colección de referencia Descriptiva: resaltar características de una colección de referencia La edad promedio de las personas encuestadas. La edad promedio de las personas encuestadas. La diferencia de edades entre el mas joven y el mas viejos de los encuestados. La diferencia de edades entre el mas joven y el mas viejos de los encuestados. El cash promedio de los encuestados El cash promedio de los encuestados La mayor cantidad de cash de los encuestados. La mayor cantidad de cash de los encuestados. Medias, varianzas, proporciones, maximos, minimos, errores estandar, etc. Medias, varianzas, proporciones, maximos, minimos, errores estandar, etc.

20 Inferencial: conocer caracteristicas poblacionales a partir de una muestra Inferencial: conocer caracteristicas poblacionales a partir de una muestra ¿Cuál es la edad promedio de las personas en la clase? ¿Cuál es la edad promedio de las personas en la clase? ¿Qué cantidad de cash lleva un argentino que vive en Buenos Aires? ¿Qué cantidad de cash lleva un argentino que vive en Buenos Aires? ¿Qué edad tiene la persona mayor que vendria a esta Maestria? ¿Qué edad tiene la persona mayor que vendria a esta Maestria? ¿Hay mas mujeres que hombres en esta Maestria? (¿Cuándo? ¿Ahora?) ¿Hay mas mujeres que hombres en esta Maestria? (¿Cuándo? ¿Ahora?)

21 La estadistica inferencial es una disciplina compleja, en comparacion con la descriptiva. La estadistica inferencial es una disciplina compleja, en comparacion con la descriptiva. Requiere explicitar el vínculo que hay entre la población y la muestra (usualmente, un modelo probabilistico). Requiere explicitar el vínculo que hay entre la población y la muestra (usualmente, un modelo probabilistico).

22 Por ejemplo, en el contexto inferencial, la edad promedio de los encuestados es una estimación de la edad de la clase. Por ejemplo, en el contexto inferencial, la edad promedio de los encuestados es una estimación de la edad de la clase. ¿Cuan confiable sera esta estimación? ¿Cuan confiable sera esta estimación? Depende de: 1) la cantidad de personas encuestadas (todos: optimo, uno?), 2) cuan heterogenea es la poblacion (???), 3) ciertas caracteristicas del proceso de estimacion (insesgadez?). Depende de: 1) la cantidad de personas encuestadas (todos: optimo, uno?), 2) cuan heterogenea es la poblacion (???), 3) ciertas caracteristicas del proceso de estimacion (insesgadez?).

23 Estadistica y Econometria Estadística: desarrollada fundamentalmente para las ciencias experimentales. Estadística: desarrollada fundamentalmente para las ciencias experimentales. Datos experimentales: proceden de un experimento controlable. Aleatoriedad: error de medicion. Ejemplo: efecto de una droga en temperatura corporal. Datos experimentales: proceden de un experimento controlable. Aleatoriedad: error de medicion. Ejemplo: efecto de una droga en temperatura corporal. Ciencias sociales: datos observacionales. Ejemplo: educacion y salarios. Ciencias sociales: datos observacionales. Ejemplo: educacion y salarios.

24 Econometria: uso de la estadística en cuestiones relacionadas con la economía Econometria: uso de la estadística en cuestiones relacionadas con la economía ¿Una disciplina aparte? La parte de la estadística integrada verticalmente a la economía. ¿Una disciplina aparte? La parte de la estadística integrada verticalmente a la economía. ¿Por qué? Datos no experimentales, Leyes no exactas, aleatoriedad como heterogeneidad no observable, dependencias, etc. ¿Por qué? Datos no experimentales, Leyes no exactas, aleatoriedad como heterogeneidad no observable, dependencias, etc.

25 La esencia de la estadistica y la econometria

26 La esencia de la estadistica 1: estimar Estimación: conjetura educada y en base a datos, acerca de una magnitud desconocida. Estimación: conjetura educada y en base a datos, acerca de una magnitud desconocida. Ejemplo: cuantos argentinos están desempleados actualmente. Ejemplo: cuantos argentinos están desempleados actualmente. Método: Encuesta Permanente de Hogares. Proporcion de personas desempleadas en la encuesta. Método: Encuesta Permanente de Hogares. Proporcion de personas desempleadas en la encuesta.

27 Significatividad estadistica y variabilidad muestral Un ejemplo: en una caja hay 10 bolitas negras y/o blancas. Un ejemplo: en una caja hay 10 bolitas negras y/o blancas. Problema: ¿Cuál es la proporcion de blancas? Problema: ¿Cuál es la proporcion de blancas? Estimador: proporcion de bolitas blancas en un una muestra Estimador: proporcion de bolitas blancas en un una muestra ¿Cuan confiable es la estimacion si sacamos: 1 bolita, 4 bolitas, 10 bolitas? ¿Cuan confiable es la estimacion si sacamos: 1 bolita, 4 bolitas, 10 bolitas? Mas es mejor. Cuanto mas homogenea sea la poblacion, mejor. Mas es mejor. Cuanto mas homogenea sea la poblacion, mejor. Variabilidad muestral: cuán distintas pueden haber sido las estimaciones. Ejemplo extremo: 10 bolitas? 1 bolita? ¿Todas negras o blancas? Variabilidad muestral: cuán distintas pueden haber sido las estimaciones. Ejemplo extremo: 10 bolitas? 1 bolita? ¿Todas negras o blancas?

28 Todas estimacion requiere alguna idea de la variabilidad muestral Todas estimacion requiere alguna idea de la variabilidad muestral Ejemplo: En base a personas encuestadas en el GBA, el 15,66% de las personas es pobre. Un intervalo de confianza al 95% es (14,95%-16,36%) Ejemplo: En base a personas encuestadas en el GBA, el 15,66% de las personas es pobre. Un intervalo de confianza al 95% es (14,95%-16,36%) ¿Intervalo de confianza? ¿Al 100%? ¿Intervalo de confianza? ¿Al 100%?

29 La Esencia de la Estadistica 2: Evaluar Hipotesis Hipotesis: aseveracion acerca de una magnitud desconocida. Hipotesis: aseveracion acerca de una magnitud desconocida. Puede ser cierta o falsa. Puede ser cierta o falsa. Test de hipotesis: mecanismo estadistico que, en base a datos, decide aceptar o rechazar la hipotesis. Test de hipotesis: mecanismo estadistico que, en base a datos, decide aceptar o rechazar la hipotesis. Cuidado: no determina si es verdadera o falsa, sino nuestra postura al respecto. Cuidado: no determina si es verdadera o falsa, sino nuestra postura al respecto.

30 Ejemplo: Ejemplo: Hipotesis nula (mantenida): una empresa contrata por igual a hombres y mujeres. Hipotesis nula (mantenida): una empresa contrata por igual a hombres y mujeres. Hipotesis alternativa: la empresa discrimina en contra de las mujeres, y tiende a preferir hombres, por el simple hecho de ser hombres. Hipotesis alternativa: la empresa discrimina en contra de las mujeres, y tiende a preferir hombres, por el simple hecho de ser hombres. Test de hipotesis: en base a la proporcion de mujeres contratadas en sus busquedas, decidir si se acepta o no la hipotesis nula. Test de hipotesis: en base a la proporcion de mujeres contratadas en sus busquedas, decidir si se acepta o no la hipotesis nula.

31 Tests de hipotesis como herramienta de prueba: siempre hay errores VerdaderoFalsa AceptoOk Error de tipo II Rechazo Error de tipo I Ok

32 Optimamente: decidir sin error Optimamente: decidir sin error Problema I: no evidencia conclusiva, interviene cierta aleatoriedad. Ejemplo, las contrataciones tienen un componente fortuito. En nuestro ejemplo, el punto es contratan significativamente menos mujeres que hombres. Problema I: no evidencia conclusiva, interviene cierta aleatoriedad. Ejemplo, las contrataciones tienen un componente fortuito. En nuestro ejemplo, el punto es contratan significativamente menos mujeres que hombres. Ergo, cualquier decision bajo incertidumbre esta sujeta a errores Ergo, cualquier decision bajo incertidumbre esta sujeta a errores

33 Problema II: achicar un error implica agrandar el otro. Problema II: achicar un error implica agrandar el otro. Ejemplo: cine. Ejemplo: cine. No es posible no cometer errores No es posible no cometer errores Solucion clasica: diseñar un test de hipotesis que fije un maximo tolerable para un tipo de error, y haga que el otro sea lo mas chico posible. Solucion clasica: diseñar un test de hipotesis que fije un maximo tolerable para un tipo de error, y haga que el otro sea lo mas chico posible.

34 Ejemplo: en el caso de discriminacion, decidir que hay discriminacion si se encuentra que la empresa contrato menos que el 40% de las mujeres. Ejemplo: en el caso de discriminacion, decidir que hay discriminacion si se encuentra que la empresa contrato menos que el 40% de las mujeres. ¿Cómo se determina el umbral 40%? ¿Cómo se determina el umbral 40%? En base a 1) cantidad de casos (personas) involucradas 2) proporcion de mujeres y hombres en la poblacion de referencia En base a 1) cantidad de casos (personas) involucradas 2) proporcion de mujeres y hombres en la poblacion de referencia

35 Idea Supongamos que al trabajo se postulan igual proporcion de hombres y mujeres. Supongamos que al trabajo se postulan igual proporcion de hombres y mujeres. En el proceso de selección intervienen factores fortuitos: algunas personas rechazan la oferta, la suerte juega a favor o en contra en las entrevistas, igualmente para hombres y mujeres, etc. En el proceso de selección intervienen factores fortuitos: algunas personas rechazan la oferta, la suerte juega a favor o en contra en las entrevistas, igualmente para hombres y mujeres, etc. En ausencia de discriminacion deberiamos esperar que la mitad de los contratados sean mujeres. En ausencia de discriminacion deberiamos esperar que la mitad de los contratados sean mujeres. Habrá discriminacion si la proporcion de mujeres es significativamente menor que 50% Habrá discriminacion si la proporcion de mujeres es significativamente menor que 50%

36 Un test de hipotesis clasico es un mecanismo estadistico que fija optimamente estos umbrales, es decir, intentando que el error de tipo I (rechazar cuando verdadero) no supere cierto umbral, y que el tipo II (aceptar cuando falso) sea lo mas chico posible. Un test de hipotesis clasico es un mecanismo estadistico que fija optimamente estos umbrales, es decir, intentando que el error de tipo I (rechazar cuando verdadero) no supere cierto umbral, y que el tipo II (aceptar cuando falso) sea lo mas chico posible. Cual es el máximo tolerable de error de tipo I? En la practica, no mas de 10% Cual es el máximo tolerable de error de tipo I? En la practica, no mas de 10% Significatividad: 1-error de tipo I (90% en el caso anterior). Es algo asi como la probabilidad de aceptar la hipotesis mantenida cuando es cierta. Significatividad: 1-error de tipo I (90% en el caso anterior). Es algo asi como la probabilidad de aceptar la hipotesis mantenida cuando es cierta.

37 ¿Porque no 100% de significatividad? ¿Porque no 100% de significatividad? Error tipo I: rechazo cuando no hay discriminacion. Error tipo I: rechazo cuando no hay discriminacion. Como evitar el error de tipo I? ¡Jamas rechazar! (jamas ir al cine) Como evitar el error de tipo I? ¡Jamas rechazar! (jamas ir al cine) Como? Discriminacion solo si la proporcion de mujeres es nula. Como? Discriminacion solo si la proporcion de mujeres es nula. Problema: jamas detecto discriminacion, aun cuando la hubiese Problema: jamas detecto discriminacion, aun cuando la hubiese Ergo: a fines de que el mecanismo detecte discrimine, hay que aceptar error de tipo I (para no perderme peliculas buenas, alguna mala tengo que soportar). Ergo: a fines de que el mecanismo detecte discrimine, hay que aceptar error de tipo I (para no perderme peliculas buenas, alguna mala tengo que soportar).

38 Regresion: el automovil de la estadistica moderna Analisis de regresion: la herramienta mas utilizada en econometria Analisis de regresion: la herramienta mas utilizada en econometria Variable dependiente: salarios Variable dependiente: salarios Variables independientes: educacion, experiencia, sexo, etc. Variables independientes: educacion, experiencia, sexo, etc. El analisis de regresion mide cuanto contribuye cada variable independiente en determinar la dependiente. El analisis de regresion mide cuanto contribuye cada variable independiente en determinar la dependiente.

39 Ejemplo: efectos de la contaminacion Problema: ¿tiene algun impacto la contaminacion sobre el precio de las viviendas? Problema: ¿tiene algun impacto la contaminacion sobre el precio de las viviendas? Argumento I: las casas junto al Riachuelo son mas baratas que las que estan en Palermo. Argumento I: las casas junto al Riachuelo son mas baratas que las que estan en Palermo.

40 Las casas en Palermo ademas de estar menos expuestas a la contaminacion son 1) mas lindas, 2) mas cercanas al centro, 3) mas seguras, etc., etc., etc. Las casas en Palermo ademas de estar menos expuestas a la contaminacion son 1) mas lindas, 2) mas cercanas al centro, 3) mas seguras, etc., etc., etc. El precio de una casa se determina por la contaminacion, la calidad, la cercania al centro, cuan seguro es el bario, etc., etc. El precio de una casa se determina por la contaminacion, la calidad, la cercania al centro, cuan seguro es el bario, etc., etc. Solucion: comparar casas identicas, que difieren solo en la cantidad de contaminacion. Imposible Solucion: comparar casas identicas, que difieren solo en la cantidad de contaminacion. Imposible

41 Analisis de regresion: metodo estadistico para aislar el efecto de una variable del de otras variables concurrentes. Analisis de regresion: metodo estadistico para aislar el efecto de una variable del de otras variables concurrentes. En nuestro caso, aislar la contribucion de la contaminacion al precio, del de otros factores (localizacion, calidad, vivienda, etc.). En nuestro caso, aislar la contribucion de la contaminacion al precio, del de otros factores (localizacion, calidad, vivienda, etc.).

42 Uso muy comun en litigios. Uso muy comun en litigios. Ejemplo: discriminacion. Los salarios pueden ser mas altos porque: una persona es mas productiva, mas experimentada, tiene mas educacion, hay discriminacion. Ejemplo: discriminacion. Los salarios pueden ser mas altos porque: una persona es mas productiva, mas experimentada, tiene mas educacion, hay discriminacion. Analisis de regresion: aislar el efecto de genero del de otros factores concurrentes. Analisis de regresion: aislar el efecto de genero del de otros factores concurrentes. Discriminacion: el genero es una variable relevante, aun cuando los otros factores hayan sido tenidos en cuenta. Discriminacion: el genero es una variable relevante, aun cuando los otros factores hayan sido tenidos en cuenta.

43 Estadistica y derecho Discriminacion por genero y raza. Discriminacion por genero y raza. Antitrust, defensa de la competencia. Antitrust, defensa de la competencia. Medicion de daños (contrafactuales y predictivos). Medicion de daños (contrafactuales y predictivos). Estadistica forense. Perfil de ADN Estadistica forense. Perfil de ADN Auditoria Auditoria

44 Falacias, artimañas y como mentir con estadisticas

45 Econometricks Significatividad estadistica vs. Conceptual En una empresa las mujeres en promedio ganan $5400 y los hombres, $5401. En una empresa las mujeres en promedio ganan $5400 y los hombres, $5401. En base a cierta muestra, se podria concluir que $5400 es significativamente distinto que $5401 (rechazamos la hipotesis nula de que los hombres ganan lo mismo que las mujeres) (significatividad estadistica) En base a cierta muestra, se podria concluir que $5400 es significativamente distinto que $5401 (rechazamos la hipotesis nula de que los hombres ganan lo mismo que las mujeres) (significatividad estadistica) Supongamos que nos enteramos que hay una regla que dice que las mujeres de esta empresa deben ganar 1 peso menos que los hombres. ¿Hay discriminacion? (significatividad conceptual) Supongamos que nos enteramos que hay una regla que dice que las mujeres de esta empresa deben ganar 1 peso menos que los hombres. ¿Hay discriminacion? (significatividad conceptual) No confundir significatividad estadistica con conceptual.

46 Relacion y causalidad De la existencia de una relacion estadistica no es posible inferir causalidad De la existencia de una relacion estadistica no es posible inferir causalidad Ejemplo: inversion en educacion. Ejemplo: inversion en educacion. Falacia de la correlacion Falacia de la correlacion

47 Precedencia temporal y causalidad Tampoco de la predencia temporal es posible inferir causalidad Tampoco de la predencia temporal es posible inferir causalidad Ejemplos: paraguas y lluvia. Precio de acciones. Ejemplos: paraguas y lluvia. Precio de acciones.

48 Modelos chicos vs. grandes En general, los modelos chicos (que omiten factores relevantes) tienden a ser sesgados. En general, los modelos chicos (que omiten factores relevantes) tienden a ser sesgados. Ejemplo: fumar es beneficioso para la salud Ejemplo: fumar es beneficioso para la salud Los modelos grandes tienden a ser poco conclusivos (el que mucho abarca poco aprieta) Los modelos grandes tienden a ser poco conclusivos (el que mucho abarca poco aprieta) Ejemplo: demasiadas variables en contaminacion. Nada es importante Ejemplo: demasiadas variables en contaminacion. Nada es importante

49 Toda estimacion merece un error estandar Toda estimacion puntual requiere alguna idea de cuan imprecisa es (error de muestreo, intervalo de confianza, cantidad de observaciones, etc.) Toda estimacion puntual requiere alguna idea de cuan imprecisa es (error de muestreo, intervalo de confianza, cantidad de observaciones, etc.)

50 Aceptar una hipotesis no quiere decir que sea verdadera Un test tiende a aceptar la hipotesis nula cuando a) es verdadera, b) es falsa, pero el test no puede detectar su falsedad. Un test tiende a aceptar la hipotesis nula cuando a) es verdadera, b) es falsa, pero el test no puede detectar su falsedad. Ejemplo: medicos malos Ejemplo: medicos malos Es importante garantizar la calidad del test y su uso apropiado

51 Los casos: revisitados Discriminacion por genero: test de hipotesis en base a modelos de regresion. Problema: nivel de significatividad. Enorme industria en EEUU. Discriminacion por genero: test de hipotesis en base a modelos de regresion. Problema: nivel de significatividad. Enorme industria en EEUU. Efectos nocivos del tabaco: experimentos, modelos de regresion aislando el efecto del cigarrillo del de otros. Efectos nocivos del tabaco: experimentos, modelos de regresion aislando el efecto del cigarrillo del de otros. Oprah: modelo de precios de acciones, permiten detectar comportamientos anómalos (outliers). Oprah: modelo de precios de acciones, permiten detectar comportamientos anómalos (outliers).

52 Comentarios finales y lecturas sugeridas

53 A modo de conclusion Lempert (1985): Lex regis: when econometrics or any other statistical speciality enters the courtroom, the law is king Lempert (1985): Lex regis: when econometrics or any other statistical speciality enters the courtroom, the law is king La aleatoriedad como nocion fundamental: contemplarla no debe dar lugar a justificar cualquier comportamiento. La aleatoriedad como nocion fundamental: contemplarla no debe dar lugar a justificar cualquier comportamiento. Lawyers and judges must understand not the technicalities of statistical analyses, but the underlying logic of the descriptions adn tests that statisticians offer them. Members of each community must, in short, learn what it is to think like a member of the other. Lawyers and judges must understand not the technicalities of statistical analyses, but the underlying logic of the descriptions adn tests that statisticians offer them. Members of each community must, in short, learn what it is to think like a member of the other.

54 Area muy activa en el mundo anglosajon Area muy activa en el mundo anglosajon ¿Posibilidades para el ambito local? ¿Posibilidades para el ambito local? Desmitificar ambas disciplinas. Desmitificar ambas disciplinas. Lo cuantitativo como forma de razonar Lo cuantitativo como forma de razonar

55 Guia de lecturas Textos Finkelstein, M., 2009, Basic Concepts of Probability and Statistics in the Law. Finkelstein, M., 2009, Basic Concepts of Probability and Statistics in the Law. Ulen, T., 2010, Empirical Methods in Law Ulen, T., 2010, Empirical Methods in Law Libros de casos y experiencias De Groot et al., 1994, Statistics and the Law, Wiley, New York. De Groot et al., 1994, Statistics and the Law, Wiley, New York. Kadane, J., 2008, Statistics in the Law: A Practitioner's Guide, Cases, and Materials, Springer, New York. Kadane, J., 2008, Statistics in the Law: A Practitioner's Guide, Cases, and Materials, Springer, New York.

56 Articulos Rubinfeld, D., 1985, Econometrics in the Courtroom, Columbia Law Review, 85, 5, Rubinfeld, D., 1985, Econometrics in the Courtroom, Columbia Law Review, 85, 5, Lempert, R., 1985, Statistics in the Courtroom: Building on Rubinfeld, Columbia Law Review, 85,5, Lempert, R., 1985, Statistics in the Courtroom: Building on Rubinfeld, Columbia Law Review, 85,5, Kennedy, R., 1988, McCleskey v Kemp: Race, Capital Punishment, and the Supreme Court, Harvard Law Review, 101, 7, Kennedy, R., 1988, McCleskey v Kemp: Race, Capital Punishment, and the Supreme Court, Harvard Law Review, 101, 7, Bassman, R., 2003, Statistical outlier analysis in litigation support: the case of Paul F. Engler and Cactus Feeders, Inc., v. Oprah Winfrey et al., Journal of Econometrics, 113, Bassman, R., 2003, Statistical outlier analysis in litigation support: the case of Paul F. Engler and Cactus Feeders, Inc., v. Oprah Winfrey et al., Journal of Econometrics, 113,

57 Sobre lo cuantitativo Thompson, C., 2010, Why should we learn the language of data, revista Wired, abril. Thompson, C., 2010, Why should we learn the language of data, revista Wired, abril. Paulos, J.A., 2007, El hombre anumerico, Tusquets, Buenos Aires. Paulos, J.A., 2007, El hombre anumerico, Tusquets, Buenos Aires. Best, J., 2001, Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists, U. of California Press. Best, J., 2001, Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists, U. of California Press.

58 Escribanme:


Descargar ppt "La Econometria como Herramienta en los Procesos Judiciales Walter Sosa Escudero Walter Sosa-Escudero, PhD Profesor Asociado y Director, Departamento de."

Presentaciones similares


Anuncios Google